2. COSTES DE LAS CONDUCCIONES

Como se ha indicado, una vez expuestos los criterios metodológicos y procedimientos sugeridos para el cálculo de costes, seguidamente se muestra el completo detalle de la estructura de costes resultante para todos los tramos o conducciones consideradas en el esquema global de flujos, así como diversos esquemas descriptores de estos tramos de transporte.

Los costes de construcción se expresan de forma paramétrica en función del caudal de diseño de la conducción (Mpts), mientras que los costes de flujo (concepto general que incluye los consumos y/o producción energética, el uso de instalaciones existentes, etc.) se expresan de forma unitaria (pts/m³ circulado).

2.1. CONDUCCIÓN EBRO-BARCELONA

La función de costes de este tramo (Presupuesto para Conocimiento de la Administración según el caudal continuo circulante de diseño) es la que se muestra en la figura adjunta, obtenida a partir de la valoración detallada de la conducción realizada conforme a la metodología expuesta anteriormente.

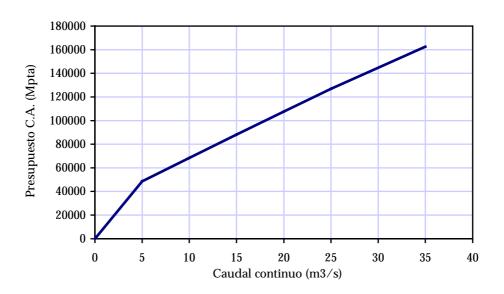


Figura 44. Conducción Ebro - Barcelona. Función de coste

Respecto a los costes de circulación de este tramo, únicamente habría que considerar los debidos a las dos impulsiones previstas en la conducción, resultando un coeficiente energético en el tramo de 0,8 kWh/m³ a un precio de 8 pts/kWh, lo que supone unos costes de 6,5 pts/m³, tal y como puede verse en las tablas adjuntas.

Como ya se ha señalado en el Anejo de descripción de transferencias, el embalse de San Jaime constituye el punto de llegada en los estudios derivados del anteproyecto de Ley de PHN de 1993. Desde él habría que conectar con la planta de tratamiento de aguas de Abrera, integrada en la red de abastecimiento de Barcelona y su área

metropolitana. En la valoración de esta alternativa solo se ha incluido el embalse, considerando la conexión como un coste de distribución.

Por otra parte, los análisis de la explotación realizados en el Anejo dedicado a las Cuencas Internas de Cataluña, permiten concluir que no es imprescindible disponer de regulación en destino. Por tanto, puede prescindirse de este embalse y sustituirlo por una balsa en cola o bien conectar directamente con la ETAP de Abrera, a orillas del Llobregat. Estas posibilidades eliminarían además la incertidumbre que en cuanto a calidad del agua puede suponer la mezcla del volumen trasvasado con el caudal del Noya, por lo que sería conveniente analizarlas en fases posteriores, no siendo previsibles, en principio, variaciones significativas del coste de la conducción principal con respecto a la valoración que se incluye a continuación.

Q	h _{func}	Nº	D	V	L	H _{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(n^0)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
5,0	16	3	1100	2,6	3247	246,0	22,9	268,9	23,3	0,9	8,0
10,0	16	3	1500	2,8	3247	246,0	17,5	263,5	45,6	0,8	8,0
15,0	16	3	1900	2,6	3247	246,0	11,2	257,2	66,7	0,8	8,0
20,0	16	3	2200	2,6	3247	246,0	9,1	255,1	88,2	0,8	8,0
25,0	16	3	2500	2,5	3247	246,0	7,2	253,2	109,5	0,8	8,0
35,0	16	3	2900	2,6	3247	246,0	6,4	252,4	152,8	0,8	8,0

Tabla 38. Conducción Ebro - Barcelona. Coeficiente energético de las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m^3)	(Pts/kWh)	(kWh/m^3)	(Pts/kWh)	(Pts/m³)	(kWh/m^3)	(Pts/kWh)	(Pts/m^3)
5,0	0,0	0,0	0,9	8,0	0,0	0,9	8,0	6,9
10,0	0,0	0,0	0,8	8,0	0,0	0,8	8,0	6,8
15,0	0,0	0,0	0,8	8,0	0,0	0,8	8,0	6,6
20,0	0,0	0,0	0,8	8,0	0,0	0,8	8,0	6,5
25,0	0,0	0,0	0,8	8,0	0,0	0,8	8,0	6,5
35,0	0,0	0,0	0,8	8,0	0,0	0,8	8,0	6,5

Tabla 39. Conducción Ebro - Barcelona. Costes de operación

T																	
								1	n	1	q (n	1 ³ /s) 2	n	2	5	3	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACIÓN DE TORTOSA							2.800		4.951		6.998		8.927		10.738		13.959
Ud Estación de bombeo (1,41 q) m Tubería de impulsión (1,41 q)				175	2155	1.826 0,176	1.826 379	3.423 0,307	3.423 662	4.909 0,441	4.909 950	6.287 0,576	6.287 1.241	7.558 0,715	7.558 1.541	9.782 1,000	9.782 2.155
m Canal roca (1,41q)					2495	0,143	357	0,188	469	0,240	599	0,293	731	0,344	858	0,422	1.053
Ud Balsa de modulación			25200 q		1	237	237	397	397	540	540	667	667	781	781	969	969
2 SEGUNDA ELEVACIÓN							1.472		2.623		3.724		4.776		5.786		7.684
Ud Estación de bombeo (1,41 q)				71	1	805	805	1.494	1.494	2.162	2.162	2.812	2.812	3.444	3.444	4.654	4.654
m Tubería de impulsión (1,41 q) Ud Balsa de modulación			25200 q		1092 2	0,176 237	192 475	0,307 397	335 794	0,441 540	482 1.080	0,576 667	629 1.335	0,715 781	781 1.561	1,000 969	1.092 1.938
3 AZUD DE TORTOSA.			•														
Ud Azud de derivación	12	500			1	429	429 429	429	429 429	429	429 429	429	429 429	429	429 429	429	429 429
4,- PRESA DE SAN JAIME																	
Ud Presa de materiales sueltos	38	440			1	1.779	1.779 1.779	1.779	1.779 1.779	1.779	1.779 1.779	1.779	1.779 1.779	1.779	1.779 1.779	1.779	1.779 1.779
	00	110				1.775	1.775	1.775		1.775	1.775	1.775	1.775	1.775		1.775	1.775
5 <u>CANAL</u> m Canal en roca (q)					130.232 130232	0,132	17.191 17.191	0,161	20.967 20.967	0,195	25.395 25.395	0,231	30.084 30.084	0,269	35.032 35.032	0,343	44.670 44.670
•					130232	0,132	17.131	0,101	20.307	0,133	23.333	0,231	30.004	0,203	33.032	0,343	44.070
6 <u>TÚNELES</u> m Túnel PK 130 (q)					10341 5877	0,307	3.175 1.804	0,415	4.292 2.439	0,508	5.253 2.986	0,589	6.091 3.462	0,660	6.825 3.879	0,778	8.045 4.572
m Túnel PK 180 (q)					4464	0,307	1.370	0,415	1.853	0,508	2.268	0,589	2.629	0,660	2.946		3.473
7 SIFONES					20041		r orr		10.115		14710		10 110		00 004		20.000
m Sifón Bº Camarles (q)					32841 342	0,160	<u>5.255</u> 55	0,308	10.115 105	0,448	14.713 153	0,582	19.113 199	0,709	23.284 242	0,941	30.903 322
m Sifón B ^o Baixes (q)					268	0,160	43	0,308	83	0,448	120	0,582	156	0,709	190	0,941	252
m Sifón B ^o Gilet (q) m Sifón B ^o Gridels (q)					365 250	0,160 0,160	58 40	0,308 0,308	112 77	0,448 0,448	164 112	0,582 0,582	212 146	0,709 0,709	259 177	0,941 0,941	343 235
m Sifón Bº Comartí (q)					331	0,160	53	0,308	102	0,448	148	0,582	193	0,709	235	0,941	311
m Sifón ctra. Rasquera - Perelló (q)					268	0,160	43	0,308	83	0,448	120	0,582	156	0,709	190	0,941	252
m Sifón B ^o Bertolins (q) m Sifón B ^o Malldates (q)					271 294	0,160 0,160	43 47	0,308 0,308	83 91	0,448 0,448	121 132	0,582 0,582	158 171	0,709 0,709	192 208	0,941 0,941	255 277
m Sifón PK 28 (q)					265	0,160	42	0,308	82	0,448	119	0,582	154	0,709	188	0,941	249
m Sifón Bº Buen Mozo (q)					289	0,160	46	0,308	89	0,448	129	0,582	168	0,709	205	0,941	272
m Sifón B ^o Estany (q) m Sifón B ^o del Senen (q)					411 1339	0,160 0,160	66 214	0,308 0,308	127 412	0,448 0,448	184 600	0,582 0,582	239 779	0,709 0,709	291 949	0,941 0,941	387 1.260
m Sifón Bº del Cap (q)					204	0,160	33	0,308	63	0,448	91	0,582	119	0,709	145	0,941	192
m Sifón PK 41 (q)					333	0,160	53	0,308	103	0,448	149	0,582	194	0,709	236	0,941	313
m Sifón Bº Lleriola (q) m Sifón Bº Lleria (q)					189 311	0,160 0,160	30 50	0,308 0,308	58 96	0,448 0,448	85 139	0,582 0,582	110 181	0,709 0,709	134 220	0,941 0,941	178 293
m Sifón Bº Cadalcocas (q)					274	0,160	44	0,308	84	0,448	123	0,582	159	0,709	194	0,941	258
m Sifón Bº Aigua al Coll (q)					377	0,160	60	0,308	116	0,448	169	0,582	219	0,709	267	0,941	355
m Sifón B ^o Tixellas (q) m Sifón B ^o Basseta (q)					374 327	0,160 0,160	60 52	0,308 0,308	115 101	0,448 0,448	168 146	0,582 0,582	218 190	0,709 0,709	265 232	0,941 0,941	352 308
m Sifón PK 58 (q)					275	0,160	44	0,308	85	0,448	123	0,582	160	0,709	195	0,941	259
m Sifón PK 60 (q)					2806	0,160	449	0,308	864	0,448	1.257	0,582	1.633	0,709	1.989	0,941	2.640
m Sifón PK 70 (q) m Sifón B ^o del Rita (q)					207 463	0,160 0,160	33 74	0,308 0,308	64 143	0,448 0,448	93 207	0,582 0,582	120 269	0,709 0,709	147 328	0,941 0,941	195 436
m Sifón PK 72 (q)					508	0,160	81	0,308	156	0,448	228	0,582	296	0,709	360	0,941	478
m Sifón Río Ruidecanyes (q) m Sifón B ^o Segures (q)					350 290	0,160 0,160	56 46	0,308 0,308	108 89	0,448 0,448	157 130	0,582 0,582	204 169	0,709 0,709	248 206	0,941 0,941	329 273
m Sifón Bº Mas Pujols (q)					249	0,160	40	0,308	77	0,448	112	0,582	145	0,709	177	0,941	234
m Sifón B ^o Roqueta (q)					1606	0,160	257	0,308	495	0,448	719	0,582	935	0,709	1.139	0,941	1.511
m Sifón B ⁰ Bassa (q) m Sifón Río Francolí (q)					3312 4879	0,160 0,160	530 781	0,308 0,308	1.020 1.503	0,448 0,448	1.484 2.186	0,582 0,582	1.928 2.840	0,709 0,709	2.348 3.459	0,941 0,941	3.117 4.591
m Sifón Riera de Vallmoll (q)					1530	0,160	245	0,308	471	0,448	685	0,582	890	0,709	1.085	0,941	1.440
m Sifón PK 120 (q)					1031	0,160	165	0,308	318	0,448	462	0,582	600	0,709	731	0,941	970
m Sifón Río Gayá (q) m Sifón Bº Tarrago (q)					1105 227	0,160 0,160	177 36	0,308 0,308	340 70	0,448 0,448	495 102	0,582 0,582	643 132	0,709 0,709	783 161	0,941 0,941	1.040 214
m Sifón Bº Rassa (q)					374	0,160	60	0,308	115	0,448	168	0,582	218	0,709	265	0,941	352
m Sifón Bº Cuatro Filas (q)					408	0,160	65	0,308	126	0,448	183	0,582	237	0,709	289 189	0,941	384 250
m Sifón Riera Marmella (q) m Sifón Torrente Almunia (q)					266 401	0,160 0,160	43 64	0,308 0,308	82 124	0,448 0,448	119 180	0,582 0,582	155 233	0,709 0,709	189 284	0,941 0,941	250 377
m Sifón Río Foix (q)					2108	0,160	337	0,308	649	0,448	944	0,582	1.227	0,709	1.495	0,941	1.984
m Sifón Aº Bribons (q) m Sifón PK 188 (q)					1506 587	0,160 0,160	241 94	0,308 0,308	464 181	0,448 0,448	675 263	0,582 0,582	876 342	0,709 0,709	1.068 416	0,941 0,941	1.417 552
m Sifón PK 191 (q)					502	0,160	80	0,308	155	0,448	225	0,582	292	0,709	356	0,941	472
m Sifón Río Riudeví (q)	Ļ				769	0,160	123	0,308	237	0,448	345	0,582	448	0,709	545	0,941	724
PRESUPUESTO DE EJECUCION MATERI GASTOS GENERALES Y BENEFICIO INI				ets).			32.100 7.383		45.155 10.386		58.291 13.407		71.198 16.376		83.873 19.291		107.470 24.718
I BENEFICIO IN			\L (m Pts.)				39.483		55.541		71.698		87.574		103.164		132.188
DDECLIBLECTO DE WEGUGION ROS CO	F Ivene		(16%) (M	Pts.):			6.317		8.887		11.472		14.012		16.506		21.150
PRESUPUESTO DE EJECUCION POR CO PRESUPUESTO CONOCIMIENTO DE LA				I (M	Pts.):		45.800 48.571		64.428 68.326		83.169 88.201		101.586 107.732		119.671 126.911	ĺ	153.338 162.615
				,	,-	l	-30.1	l						ı		ı	

Tabla 40. Conducción Ebro – Barcelona. Valoración detallada

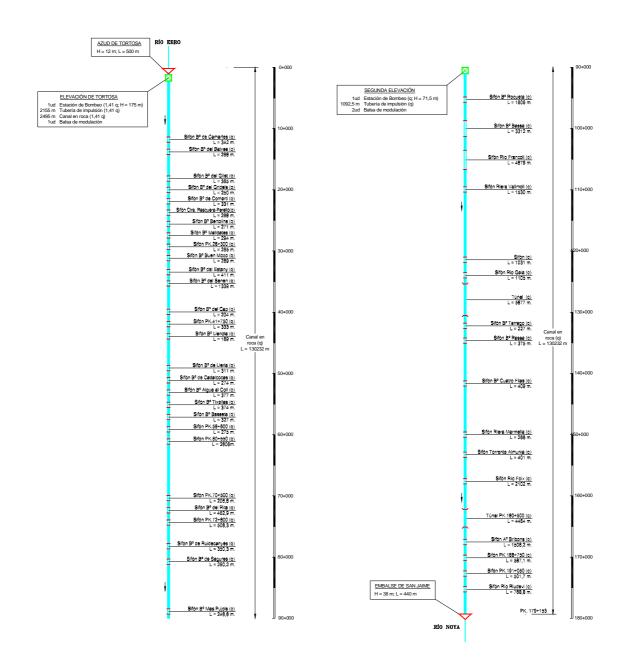


Figura 45. Conducción Ebro - Barcelona. Esquema en planta

Figura 46. Conducción Ebro - Barcelona. Esquema en alzado

2.2. CONDUCCIÓN SEGRE-BARCELONA

La función de costes de este tramo es la que se muestra en la figura adjunta, obtenida, como antes, a partir de la valoración detallada y parametrizada de los distintos elementos estructurales que integran la conducción.

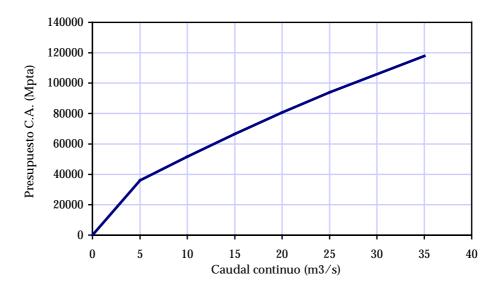


Figura 47. Conducción Segre - Barcelona. Función de coste

Respecto a los costes de circulación del tramo, habría que considerar tanto el consumo energético debido a la impulsión de Talarn, como el beneficio obtebido en la turbinación de Noya I, resultando un coeficiente energético global de 0,1 kWh/m³ a un precio variable entre 9 y -12 pts/kWh (suponiendo que por el tramo circulen 35 ó 10 m³/s respectivamente), habiéndose adoptado un precio medio.

Esta gran variabilidad en el precio de la energía según el caudal de diseño de la conducción es debida al escalonamiento de la tarifa eléctrica adoptada, que, como se indicó en el correspondiente epígrafe de este Anejo, varía en función de la potencia de la instalación y, en consecuencia, del caudal circulante por el tramo. No obstante, la incidencia final real es mucho más pequeña puesto que las diferencias en los costes de operación oscilan entre 0.9 y -1.2 pts/m^3 . Todo ello puede verse reflejado en las tablas que se adjunta.

Respecto al embalse de San Jaime cabe hacer las mismas consideraciones que en la conducción Ebro-Barcelona, por lo que se remite a dicho apartado. .

Q	h _{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
5,0	24	2	1000	3,2	825	168,3	9,7	158,6	6,99	-0,4	13,7
10,0	24	2	1400	3,2	825	168,3	6,4	161,9	14,28	-0,4	13,0
15,0	24	2	1700	3,3	825	168,3	5,1	163,2	21,59	-0,4	11,8
20,0	24	2	2000	3,2	825	168,3	3,8	164,5	29,01	-0,4	10,6
25,0	24	2	2300	3,0	825	168,3	2,8	165,4	36,48	-0,4	9,3
35,0	24	2	2700	3,1	825	168,3	2,4	165,9	51,22	-0,4	7,6

Tabla 41. Conducción Segre - Barcelona. Coeficientes energéticos en las turbinaciones

Q	h _{func}	n	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
5,0	16	2	1300	2,8	1210	149,0	7,9	156,9	13,6	0,5	9,0
10,0	16	2	1900	2,6	1210	150,0	4,2	154,2	26,7	0,5	8,0
15,0	16	2	2300	2,7	1210	151,0	3,4	154,4	40,0	0,5	8,0
20,0	16	2	2700	2,6	1210	152,0	2,6	154,6	53,5	0,5	8,0
25,0	16	2	3000	2,7	1210	153,0	2,3	155,3	67,1	0,5	8,0
35,0	16	2	3600	2,6	1210	154,0	1,7	155,7	94,2	0,5	8,0

 $Tabla\ 42.\ Conducción\ Segre-Barcelona.\ Coeficientes\ energ\'eticos\ en\ las\ elevaciones$

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	-0,4	13,7	0,5	9,0	0,0	0,1	-6,9	-0,8
10,0	-0,4	13,0	0,5	8,0	0,0	0,1	-12,4	-1,2
15,0	-0,4	11,8	0,5	8,0	0,0	0,1	-8,0	-0,8
20,0	-0,4	10,6	0,5	8,0	0,0	0,1	-3,2	-0,3
25,0	-0,4	9,3	0,5	8,0	0,0	0,1	2,2	0,2
35,0	-0,4	7,6	0,5	8,0	0,0	0,1	9,9	0,9

Tabla 43. Conducción Segre – Barcelona. Costes totales de operación

											q (n	n³/s)					
							5	1	0	1		2	0	2	5	3	5
						Importe	Importe	Importe	Importe								
	A	L	V	Н		unitario	parcial	unitario	parcial								
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)								
1 ELEVACION DE TALARN.							2.779		4.671		6.511		8.276		9.949		12.93
Ud Estación de bombeo (1,33 q)				149	1	1.474	1.474	2.779	2.779	4.014	4.014	5.179	5.179	6.275	6.275	8.263	8.26
m Tubería de impulsión (1,33 q)					622	0,169	105	0,292	182	0,418	260	0,545	339	0,675	420	0,942	58
m Canal roca (1,33q)					6127	0,141	864	0,183	1.121	0,231	1.415	0,281	1.722	0,330	2.022	0,410	2.51
m Sifón (1,33 q)					588	0,209	123	0,401	236	0,581	342	0,748	440	0,903	531	1,175	69
Ud Balsa de modulación			21600 q		1	213	213	353	353	481	481	596	596	701	701	881	88
2 TURBINACIÓN DE NOYA I							1.087		1.951		2.795		3.620		4.423		5.97
Ud Central de turbinación (q)				168	1	972	972	1.761	1.761	2.528	2.528	3.274	3.274	3.999	3.999	5.385	5.38
m Tubería forzada (q)				100	825	0,139	115	0,231	191	0,324	267	0,419	346	0,514	424	0,710	58
9 DDECA DE CAN IAIME																	
3,- PRESA DE SAN JAIME Ud Presa de materiales sueltos	38	440			1	1.779	1.779 1.779	1.779	1.779								
ou i resa de materiales sueltos	36	440				1.773	1.773	1.775	1.775	1.773	1.775	1.773	1.773	1.775	1.775	1.773	1.77
4 CANAL					42.267		5.579		6.805		8.242		9.764		11.370		14.49
m Canal en roca (q)					42267	0,132	5.579	0,161	6.805	0,195	8.242	0,231	9.764	0,269	11.370	0,343	14.49
5 TUNELES					38.531		11.829		15.990		19.574		22.695		25.430		29.97
m Túnel PK 20 (q)					10184	0,307	3.126	0,415	4.226	0,508	5.173	0,589	5.998	0,660	6.721	0,778	7.92
m Túnel PK 39 (q)					1543	0,307	474	0,415	640	0,508	784	0,589	909	0,660	1.018	0,778	1.20
m Túnel PK 42 (q)					1472	0,307	452	0,415	611	0,508	748	0,589	867	0,660	972	0,778	1.14
m Túnel PK 52 (q)					1544	0,307	474	0,415	641	0,508	784	0,589	909	0,660	1.019	0,778	1.20
m Túnel PK 57 (q)					5686	0,307	1.746	0,415	2.360	0,508	2.888	0,589	3.349	0,660	3.753	0,778	4.42
m Túnel PK 66 (q)					3231	0,307	992	0,415	1.341	0,508	1.641	0,589	1.903	0,660	2.132	0,778	2.51
m Túnel PK 74 (q)					947	0,307	291	0,415	393	0,508	481	0,589	558	0,660	625	0,778	73
m Túnel PK 85 (q)					13924	0,307	4.275	0,415	5.778	0,508	7.073	0,589	8.201	0,660	9.190	0,778	10.83
6 SIFONES					15.413		2.466		4.747		6.905		8.970		10.928		14.50
m Sifón Río Abellá (q)					2109	0,160	337	0,308	650	0,448	945	0,582	1.227	0,709	1.495	0,941	1.98
m Sifón PK 17 (q)					605	0,160	97		186	0,448	271	0,582	352	0,709	429	0,941	56
m Sifón PK 32 (q)					336	0,160	54	0,308	103	0,448	151	0,582	196	0,709	238	0,941	31
m Sifón PK 33 (q)					459	0,160	73	0,308	141	0,448	206	0,582	267	0,709	325	0,941	43
m Sifón PK34 (q)					386	0,160	62	0,308	119	0,448	173	0,582	225	0,709	274	0,941	36
m Sifón Río Rialp (q)					732	0,160	117	0,308	225	0,448	328	0,582	426	0,709	519	0,941	68
m Sifón PK 39 (q)					286	0,160	46	0,308	88	0,448	128	0,582	166	0,709	203	0,941	26
m Sifón PK 45,1 (q)					271	0,160	43	0,308	83	0,448	121	0,582	158	0,709	192	0,941	25
m Sifón PK 45,7 (q)					257	0,160	41	0,308	79	0,448	115	0,582	150	0,709	182	0,941	24
m Sifón Río Segre (q)					2970	0,160	475	0,308	915	0,448	1.331	0,582	1.729	0,709	2.106	0,941	2.79
m Sifón PK 56 (q)					499	0,160	80	0,308	154	0,448	224	0,582	290	0,709	354	0,941	47
m Sifón PK 63 (q)					875	0,160	140	0,308	270	0,448	392	0,582	509	0,709	620	0,941	82
m Sifón PK 65 (q)					341	0,160	55	0,308	105	0,448	153	0,582	198	0,709	242	0,941	32
m Sifón PK 69 (q)		1			644	0,160	103	0,308	198	0,448	289	0,582	375	0,709	457	0,941	60
m Sifón PK 76 (q)					574	0,160	92	0,308	177	0,448	257	0,582	334	0,709	407	0,941	54
m Sifón PK 78 (q)					959	0,160	153	0,308	295	0,448	430	0,582	558	0,709	680	0,941	90
m Sifón PK 83 (q)					685	0,160	110	0,308	211	0,448	307	0,582	399	0,709	486	0,941	64
m Sifón PK 99 (q)					229	0,160	37	0,308	71	0,448	103	0,582	133	0,709	162	0,941	21
m Sifón PK 101 (q)					224	0,160	36	0,308	69	0,448	100	0,582	130	0,709	159	0,941	21
m Sifón PK 103 (q)					777	0,160	124	0,308	239	0,448	348	0,582	452	0,709	551	0,941	73
m Sifón PK 105 (q)					1195	0,160	191	0,308	368	0,448	535	0,582	695	0,709	847	0,941	1.12
PRESUPUESTO DE EJECUCION MA	TERIA	L (M	Pts.)	<u> </u>			23.741		34.165		44.027		53.324		62.100		77.88
GASTOS GENERALES Y BENEFICIO	INDU	USTR	IAL (23%)	(M P	ts.):		5.460		7.858		10.126		12.265		14.283		17.91
		TOT	AL (m Pts	.)			29.201		42.023		54.154		65.589		76.383		95.79
		I.V.A	. (16%) (N	A Pts.):		4.672	l	6.724		8.665		10.494		12.221		15.32
PRESUPUESTO DE EJECUCION POR	CON	TRA	ΓA (M Pts	.):			33.873		48.747		62.818		76.083		88.605		111.12
PRESUPUESTO CONOCIMIENTO D	FIA A	армі	NISTRA	CIÓN	(M Ptc)	l	35.923		51.696		66.619		80.686		93.965	l	117.84

Tabla 44. Conducción Segre – Barcelona. Valoración detallada

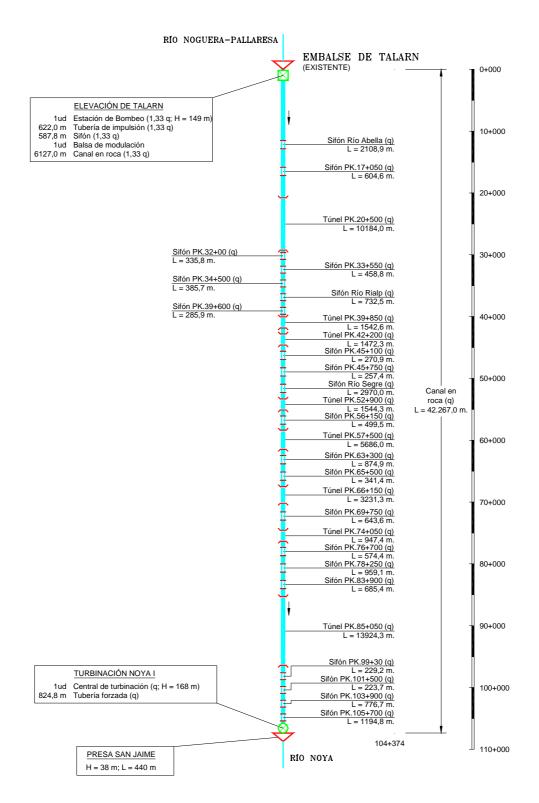


Figura 48. Conducción Segre - Barcelona. Esquema en planta

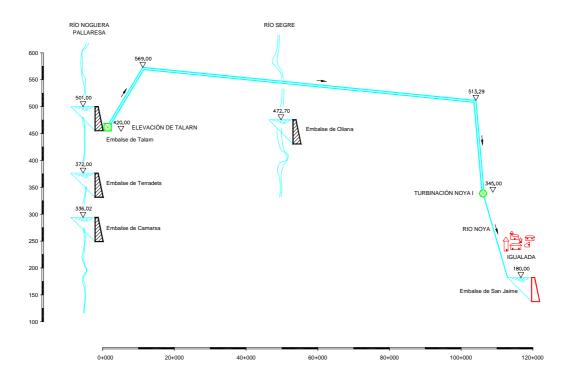


Figura 49. Conducción Segre - Barcelona. Esquema en alzado

2.3. CONDUCCIÓN RÓDANO-BARCELONA

La conducción Ródano-Barcelona consta, básicamente, de dos tramos: el primero (tramo I, en territorio francés) consiste en una impulsión de 192 kilómetros de longitud y cinco estaciones de bombeo, mientras que en el segundo (tramo II, en territorio español) el agua discurre por una conducción de 139 kilómetros de longitud con una sola elevación intermedia (116 de tubería a presión, 23 de túnel, también a presión y una estación de bombeo). Además, se prevé un depósito de regulación.

Para el dimensionamiento y valoración de esta conducción no puede utilizarse el mismo procedimiento que en las anteriores, ya que dicha metodología dimensiona las conducciones a presión directamente a partir de la velocidad (supuesta en torno a 2-3 m/s), lo que en el caso de impulsiones cortas supone unas pérdidas de carga admisibles. En el caso de impulsiones muy largas (como es el caso de esta conducción, de más de 300 km de longitud), las pérdidas de carga pueden ser determinantes en los costes energéticos, por lo que se hace necesario realizar previamente un estudio de optimización ya que cuánto mayor sea el diámetro de la conducción mayor será la inversión, pero menores las pérdidas de carga y, en consecuencia, menores los costes de operación (energéticos), por lo que existirá un diámetro que haga óptima la suma de ambos costes.

El procedimiento seguido en dicho estudio de optimización para determinar los diámetros óptimos ha sido el siguiente:

Valoración de cada uno de los tramos I y II en las hipótesis de que la impulsión se dimensione con diversos diámetros para cada uno de los caudales para los que se ha estudiado la conducción (5; 7,5; 10; 15; 25 y 35 m³/s). Dicha valoración, como se ha indicado, no puede realizarse mediante el procedimiento general empleado en el resto de las conducciónes (ya que mediante éste, la valoración se realiza para un diámetro fijo para cada valor del caudal, de manera que la velocidad del agua sea de 2-3 m/s, sin atender a criterios de optimización), por lo que se ha realizado sobre la base de los precios de ejecución material de los tubos mostrados en la tabla

DN (mm)	P.E.M.
	(pts/m)
1000	38.870
1200	53.907
1400	70.035
1500	76.855
1600	85.790
1800	95.088
2000	120.000
2500	180.000
3000	260.000

Tabla 45. Precios de ejecución material de tuberías

La valoración de la conducción se ha realizado en la hipótesis de que el precio del tubo sea el 70% del total del presupuesto, lo que supone la misma proporción que en la valoración mediante el procedimiento general.

Las estaciones de bombeo se han valorado mediante el procedimiento general, en función del caudal continuo de la conducción y la altura de bombeo (geométrica más pérdidas por rozamiento, las cuales son variables en función del diámetro y del caudal y se calculan simplificadamente mediante la fórmula de Manning).

- Con todo lo anterior, se obtiene la inversión total de la conducción en cada uno de los tramos I y II, Presupuesto para Conocimiento de la Administración, para diversos caudales y para diferentes diámetros de la impulsión, la cual, suponiendo se amortice a 50 años y con una tasa de descuento del 6%, equivale a una anualidad de amortización del 4% de la inversión total.
- Respecto a los costes de mantenimiento y reposición, se han considerado constantes, con una anualidad de valor el 0,75% del total de la inversión. Para la estimación de los costes energéticos, para cada caudal de diseño de la conducción y diámetro seleccionado se ha calculado su coeficiente energético (en kWh/m³) el cuál multiplicado por un precio medio de la energía (8 pts/kWh) y

- por el volumen transportado anualmente (en m³/año) supone el coste energético anual (en Mpts/año).
- Sumando las anteriores partidas de amortización anual de las inversiones, costes de mantenimiento y reposición y costes energéticos, se obtiene el coste total anual de la conducción, el cual, para cada caudal estudiado, presenta un mínimo para un valor determinado del diámetro, valor éste que es el que hace óptima la inversión.

Todo este procedimiento se resume en las tablas que se adjuntan, obteniéndose de ellas la función de coste de la conducción representada en la figura.

								Valoración tramo I (PCA)												
								Impu	ılsión			Bombeos			Total	CE		Costes anual	es (M Pts.)
q	n^{o}	DN	\mathbf{v}	L	H_{bruto}	$H_{\text{rozam.}}$	H_{neto}	Precio	P.C.A.	EB1	EB2	EB3	EB4	EB5	(PCA)					
(m ³ /s)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	tubo	(M Pts.)	(kwh/m ³) Amortiz	. Conservac.	Energía	Total						
5	1	1000	6,37	192000	190	9005	9195	38870	15972	8.722	21.133	21.166	11.830	4.105	82.928	29,4	3.317	622	3817	7756
5	1	1200	4,42	192000	190	3406	3596	53907	22151	3.651	11.502	11.842	5.214	2.204	56.565	11,5	2.263	424	15581	18268
5	1	1400	3,25	192000	190	1497	1687	70035	28779	1.734	5.658	6.174	2.577	1.534	46.456	5,4	1.858	348	7309	9516
5	1	1500	2,83	192000	190	1036	1226	76855	31581	1.257	4.052	4.616	1.912	1.371	44.789	3,9	1.792	336	5312	7440
5	1	1600	2,49	192000	190	734	924	85790	35253	941	2.959	3.557	1.470	1.263	45.443	3,0	1.818	341	4005	6164
5	1	1800	1,96	192000	190	392	582	95088	39073	580	1.679	2.315	963	1.141	45.752	1,9	1.830	343	2521	4694
5	1	2000	1,59	192000	190	223	413	120000	49310	402	1.034	1.690	711	1.081	54.228	1,3	2.169	407	1791	4367
5	1	2500	1,02	192000	190	68	258	180000	73965	236	430	1.104	477	1.025	77.238	0,8	3.090	579	1118	4787
5	1	3000	0,71	192000	190	26	216	260000	106839	191	265	943	413	1.010	109.661	0,7	4.386	822	935	6144
7,5	1	1200	6,63	192000	190	7663	7853	53907	22151	10.729	21.814	21.796	14.314	5.313	96.117	25,1	3.845	721	51041	55607
7,5	1	1400	4,87	192000	190	3368	3558	70035	28779	5.250	15.510	15.908	7.440	3.192	76.078	11,4	3.043	571	23124	26738
7,5	1	1500	4,24	192000	190	2331	2521	76855	31581	3.764	11.766	12.326	5.450	2.660	67.547	8,1	2.702	507	16386	19594
7,5	1	1600	3,73	192000	190	1652	1842	85790	35253	2.757	8.846	9.526	4.077	2.309	62.767	5,9	2.511	471	11974	14955
7,5	1	1800	2,95	192000	190	882	1072	95088	39073	1.580	5.082	5.912	2.452	1.905	56.003	3,4	2.240	420	6965	9625
7,5	1	2000	2,39	192000	190	503	693	120000	49310	988	3.055	3.964	1.627	1.705	60.649	2,2	2.426	455	4502	7382
7,5	1	2500	1,53	192000	190	153	343	180000	73965	434	1.083	2.067	850	1.520	79.920	1,1	3.197	599	2229	6025
7,5	1	3000	1,06	192000	190	58	248	260000	106839	283	530	1.535	636	1.470	111.292	0,8	4.452	835	1611	6897
10	1	1400	6,50	192000	190	5987	6177	70035	28779	11.112	21.688	21.621	14.813	5.854	103.866	19,8	4.155	779	53533	58466
10	1	1500	5,66	192000	190	4144	4334	76855	31581	8.160	20.538	20.752	11.261	4.675	96.968	13,9	3.879	727	37559	42165
10	1	1600	4,97	192000	190	2937	3127	85790	35253	6.033	17.154	17.627	8.544	3.881	88.492	10,0	3.540	664	27101	31304
10	1	1800	3,93	192000	190	1567	1757	95088	39073	3.433	10.789	11.627	5.084	2.957	72.964	5,6	2.919	547	15228	18694
10	1	2000	3,18	192000	190	893	1083	120000	49310	2.082	6.674	7.721	3.236	2.494	71.518	3,5	2.861	536	9390	12787
10	1	2500	2,04	192000	190	272	462	180000	73965	793	2.302	3.556	1.445	2.063	84.124	1,5	3.365	631	4002	7998
10	1	3000	1,41	192000	190	103	293	260000	106839	435	1.018	2.331	944	1.944	113.511	0,9	4.540	851	2537	7929
15	2	1200	6,63	192000	190	7663	7853	53907	44303	17.823	-3.872	-4.714	21.168	9.805	84.512	25,1	3.380	634	102083	106097
15	2	1400	4,87	192000	190	3368	3558	70035	57557	9.698	21.716	21.810	13.267	6.037	130.086	11,4	5.203	976	46249	52428
15	2	1500	4,24	192000	190	2331	2521	76855	63162	7.082	19.000	19.573	10.038	5.051	123.906	8,1	4.956	929	32771	38657
15	2	1600	3,73	192000	190	1652	1842	85790	70505	5.231	15.350	16.289	7.644	4.389	119.408	5,9	4.776	896	23947	29619
15	2	1800	2,95	192000	190	882	1072	95088	78147	2.997	9.408	10.814	4.660	3.622	109.648	3,4	4.386	822	13929	19138
15	2	2000	2,39	192000	190	503	693	120000	98620	1.847	5.786	7.441	3.088	3.239	120.022	2,2	4.801	900	9003	14704
15	2	2500	1,53	192000	190	153	343	180000	147931	756	2.033	3.931	1.576	2.882	159.109	1,1	6.364	1193	4457	12015
15	2	3000	1,06	192000	190	58	248	260000	213678	454	945	2.910	1.155	2.784	221.927	0,8	8.877	1664	3222	13763
25	2	1800	4,91	192000	190	2449	2639	95088	78147	11.424	21.563	21.158	15.481	8.163	155.935	8,5	6.237	1170	57169	64576
25	2	2000	3,98	192000	190	1396	1586	120000	98620	7.158	19.021	20.014	10.410	6.591	161.813	5,1	6.473	1214	34363	42049
25	2	2500	2,55	192000	190	425	615	180000	147931	2.574	7.890	10.423	4.424	5.065	178.305	2,0	7.132	1337	13317	21787
25	2	3000	1,77	192000	190	161	351	260000	213678	1.220	3.406	6.399	2.580	4.637	231.920	1,1	9.277	1739	7596	18612
35	3	1800	4,58	192000	190	2133	2323	95088	117220	5.262	15.322	15.850	7.500	2.750	163.904	7,4	6.556	1229	70464	78249
35	3	2000	3,71	192000	190	1216	1406	120000	147931	3.205	9.852	11.520	4.650	2.050	179.208	4,5	7.168	1344	42650	51162
35	3	2500	2,38	192000	190	370	560	180000	221896	1.250	3.520	4.750	2.050	1.250	234.716	1,8	9.389	1760	16984	28133
35	3	3000	1,65	192000	190	140	330	260000	320516	625	1.520	3.010	1.250	1.050	327.971	1,1	13.119	2460	10007	25585

Tabla 46. Conducción Ródano-Barcelona. Valoración tramo I

	Valoración tramo II (PCA)															
						Impı	ılsión	Túr	nel	Bombeos	Total	CE	(Costes anua	les (M Pts.)
q	n^{o}	DN	\mathbf{v}	L	Н	Precio	Total	Precio	Total							
(m^3/s)	tubos	(mm)	(m/s)	(m)	(m)	tubo	(M Pts.)	unitario	(M Pts.)	(M Pts.)	(M Pts.)	(kwh/m³)	Amortiz.	Conservac.	Energía	Total
5	1		2.83	120794	652	74059	15986	322400	6427	6.011	28.425	1.93	1.137	213	2608	3958
5	1	1800	1.96	120794	246	100151	21618	388035	7736	2.140	31.494	0.63	1.260	236	851	2347
5	1	2000	1.59	120794	141	120515	26014	434440	8661	1.058	35.733	0.29	1.429	268	392	2090
5	1	2200	1.32	120794	85	143255	30923	482962	9628	475	41.026	0.11	1.641	308	150	2098
5	1	2400		120794	53	168372	36344	533602	10638	144	47.126	0.01	1.885	353	14	2252
5	1	2500	1.02	120794	43	181821	39247	559716	11159	0	50.406	0.00	2.016	378	0	2394
5	2	1500	1.41	120794	163	74059	31972	463621	9243	1.289	42.504	0.36	1.700	319	489	2508
5	2	1600	1.24	120794	115	82162	35470	498620	9940	798	46.209	0.21	1.848	347	284	2479
5	2	1800	0.98	120794	62	100151	43236	571796	11399	234	54.869	0.04	2.195	412	50	2657
7.5	1	1800	2.95	120794	555	100151	21618	388035	7736	7.381	36.735	1.62	1.469	276	3280	5025
7.5	1	2400	1.66	120794	120	168372	36344	533602	10638	1.201	48.183	0.22	1.927	361	452	2741
7.5	1	2500	1.53	120794	96	181821	39247	559716	11159	838	51.243	0.15	2.050	384	300	2734
7.5	1	2600	1.41	120794	78	195864	42279	586360	11690	553	54.522	0.09	2.181	409	182	2772
7.5	1	3000	1.06	120794	36	257977	55686	698231	13920	0	69.606	0.00	2.784	522	0	3306
7.5	2	1500	2.12	120794	367	74059	31972	463621	9243	4.845	46.060	1.01	1.842	345	2058	4246
7.5	2	1800	1.47	120794	139	100151	43236	571796	11399	1.495	56.130	0.28	2.245	421	576	3242
7.5	1	2000	2.39	120794	316	120515	26014	434440	8661	4.130	38.805	0.85	1.552	291	1730	3573
10	1	2500		120794	171	181821	39247	559716	11159	2.595	53.001	0.39	2.120	398	1049	3566
10	1	2800	1.62	120794	93	225733	48726	641236	12784	1.020	62.529	0.14	2.501	469	376	3346
10	1	3000	1.41	120794	65	257977	55686	698231	13920	420	70.026	0.05	2.801	525	127	3453
10	1	3500	1.04	120794	28	348983	75330	849982	16945	0	92.275	0.00	3.691	692	0	4383
10	2	2000	1.59	120794	141	120515	52028	649208	12943	1.984	66.955	0.29	2.678	502	785	3965
10	2	2200	1.32	120794	85	143255	61845	730856	14570	835	77.251	0.11	3.090	579	299	3969
10	2	2400	1.11	120794	53	168372	72688	816740	16283	177	89.148	0.01	3.566	669	27	4262
15	1	2500	3.06	120794	385	181821	39247	559716	11159	9.437	59.842	1.07	2.394	449	4351	7194
15	1	3000		120794	145	257977	55686	698231	13920	3.036	72.642	0.31	2.906	545	1241	4692
15	1	3500	1.56	120794	64	348983	75330	849982	16945	551	92.827	0.04	3.713	696	181	4591
15	2	2200	1.97	120794	190	143255	61845	730856	14570	4.332	80.748	0.45	3.230	606	1822	5658
15	2	2500	1.53	120794	96	181821	78494	861271	17170	1.552	97.217	0.15	3.889	729	600	5218
15	2	2600	1.41	120794	78	195864	84557	906861	18079	991	103.627	0.09	4.145	777	364	5287
15	2	2500	1.53	120794	96	181821	78494	861271	17170	1.552	97.217	0.15	3.889	729	600	5218
15	2	3000	1.06	120794	36	257977	111372	1099809	21926	0	133.298	0.00	5.332	1000	0	6332
0.5		0.500	0.55	100704	007	101001	70404	001071	17170	10.001	105 710	0.70	4.000	700	4705	0700
25	2			120794	267	181821	78494	861271	17170	10.081	105.746	0.70	4.230	793	4705	9728
25	2		1.77	120794	101	257977	111372	1099809	21926	2.727	136.024	0.16	5.441	1020	1106	7567
25	2	3500	1.30	120794	44	348983	150660	1364822	27209	0	177.869	0.00	7.115	1334	0	8449
25	3			120794	235	143255	92768	950887	18957	8.787	120.512	0.59	4.820	904	4004	9728
25	3	1800	3.27	120794	685	100151	64854	732759	14608	20.725	100.188	2.03	4.008	751	13751	18510
0.5	0	9900	4.00	190704	1007	140077	01045	700050	14570	11.050	00 075	0.10	0 501	000	90001	24004
35	2	2200	4.60	120794	1035	143255	61845	730856	14570	11.859	88.275	3.16	3.531	662	29891	34084
35	3	2000	3.71	120794	765	120515	78042	838646	16719	20.826	115.587	2.29	4.623	867	21690	27180
35	3		2.38	120794	233	181821	117742	1131162	22551	11.538	151.830	0.59	6.073	1139	5543	12755
35	3		1.36	120794	53	310799	201263	1681790	33528	328	235.120	0.01	9.405	1763	89	11257
35	3	3500	1.21	120794	39	348983	225991	1835333	36589	0	262.580	0.00	10.503	1969	0	12473

Tabla 47. Conducción Ródano-Barcelona. Valoración tramo II

Q (m ³ /s)	Tramo I (M Pts)	Tramo II (M Pts)	Total (M Pts.)
5	54.228	35.733	89.961
7,5	79.920	51.243	131.163
10	113.511	62.529	176.040
15	159.109	97.217	256.326
25	231.920	136.024	367.944
35	327.971	235.120	563.091

Tabla 48. Conducción Ródano-Barcelona. Costes totales de la conducción

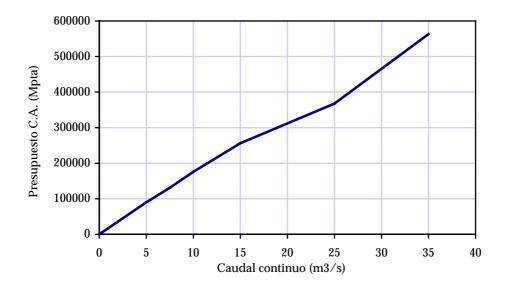


Figura 50. Conducción Ródano-Barcelona. Función de coste

Respecto a los costes de circulación de este tramo, habría que considerar únicamente los debidos al consumo energético en las seis elevaciones de la conducción, lo que supone un coeficiente energético medio de 1,25 kWh/m³ con el precio de la energía 8,0 pts/kWh, ello implica unos costes totales de flujo de unas 10,0 pts/m³. Las tablas adjuntas muestran el detalle de tales estimaciones.

Q	h _{func}	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
5,0	24	1	2000	1,6	312.794	240,0	363,9	504,0	29,1	1,61	8,0
7,5	24	1	2500	1,5	312.794	240,0	249,1	389,0	33,6	1,25	8,0
10,0	24	1	3000	1,4	312.794	240,0	167,4	336,0	38,7	1,08	8,0
15,0	24	2	2500	1,5	312.794	240,0	249,1	389,0	67,3	1,25	8,0
25,0	24	2	3000	1,8	312.794	240,0	261,6	402,0	115,9	1,29	8,0
35,0	24	3	3000	1,7	312.794	240,0	227,9	368,0	148,5	1,18	8,0

Tabla 49. Conducción Ródano-Barcelona. Coeficientes energéticos en los bombeos

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	Operación
(m ³ /s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	0,0	0,0	1,6	8,0	0,0	1,6	8,0	12,9
10,0	0,0	0,0	1,2	8,0	0,0	1,2	8,0	10,0
15,0	0,0	0,0	1,1	8,0	0,0	1,1	8,0	8,6
20,0	0,0	0,0	1,2	8,0	0,0	1,2	8,0	10,0
25,0	0,0	0,0	1,3	8,0	0,0	1,3	8,0	10,3
35,0	0,0	0,0	1,2	8,0	0,0	1,2	8,0	9,4

Tabla 50. Conducción Ródano-Barcelona. Costes totales de circulación

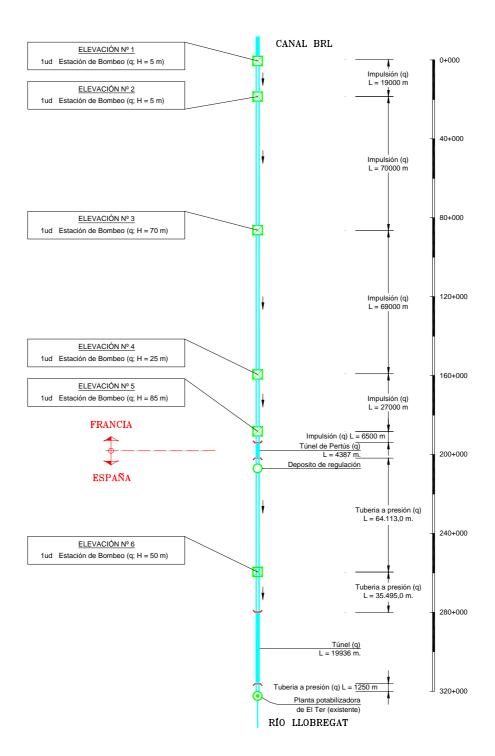


Figura 51. Conducción Ródano - Barcelona. Esquema en planta

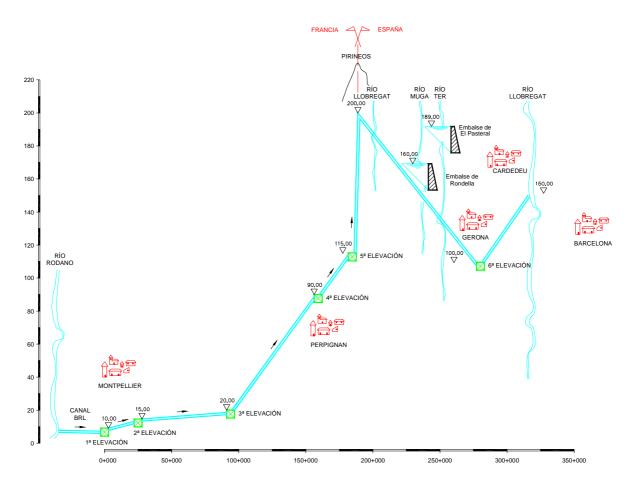


Figura 52. Conducción Ródano - Barcelona. Esquema en alzado

2.4. CONDUCCIÓN EBRO-CASTELLÓN NORTE

La función de costes de este tramo es la que se muestra en la figura adjunta.

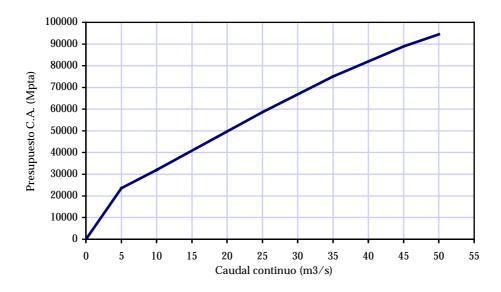


Figura 53. Conducción Ebro-Castellón Norte. Función de costes

Respecto a los costes de circulación, habría que considerar únicamente los debidos al consumo energético en la elevación de Cherta-Valdeinfierno, con lo que resulta un coeficiente energético variable entre 0,6 y 0,7 kWh/m³ y un precio de la energía de 8 pts/kWh, lo que supone unos costes totales de operación de 5 a 5,7 pts/m³. Todo ello puede verse debidamente justificado en las tablas adjuntas.

-	Q	h_{func}	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
	(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
-	5,0	18	4	900	2,6	3473	190,0	31,7	221,7	17,0	0,7	8,0
	10,0	18	4	1300	2,5	3473	190,0	17,9	207,9	32,0	0,7	8,0
	25,0	18	4	2000	2,7	3473	190,0	11,2	201,2	77,3	0,6	8,0
	35,0	18	4	2400	2,6	3473	190,0	8,3	198,3	106,7	0,6	8,0
	45,0	18	4	2700	2,6	3473	190,0	7,3	197,3	136,5	0,6	8,0
	50,0	18	4	2900	2,5	3473	190,0	6,2	196,2	150,8	0,6	8,0

Tabla 51. Conducción Ebro-Castellón Norte. Coeficientes energéticos en las elevaciones

	Turbin	aciones	Eleva	ciones	Varios	To	otal	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	0,0	0,0	0,7	8,0	0,0	0,7	8,0	5,7
10,0	0,0	0,0	0,7	8,0	0,0	0,7	8,0	5,3
25,0	0,0	0,0	0,6	8,0	0,0	0,6	8,0	5,2
35,0	0,0	0,0	0,6	8,0	0,0	0,6	8,0	5,1
45,0	0,0	0,0	0,6	8,0	0,0	0,6	8,0	5,1
50,0	0,0	0,0	0,6	8,0	0,0	0,6	8,0	5,0

Tabla 52. Conducción Ebro-Castellón Norte. Costes totales de circulación

q (m³/s)																	
						5.	0	10	0	25		35	0	45	0	50	0
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACION CHERTA-VALDEINFIERNO							2.927		4.767		10.268		13.425		16.194		17.435
Ud Estación de bombeo (1,33 q)				190,0	1	2.054	2.054	3.399	3.399	7.320	7.320	9.451	9.451	11.209	11.209	11.949	11.949
m Tubería de impulsión (1,33 q)					3.473	0,169	587	0,268	931	0,612	2.125	0,850	2.952	1,096	3.806	1,222	4.244
m Canal en tierra (1,33 q)					820	0,089	73	0,103	84	0,148	121	0,173	142	0,187	153	0,189	155
Ud Balsa de modulación			21600.q		1	213	213	353	353	701	701	881	881	1.026	1.026	1.087	1.087
2 CANAL					93.800		10.839		13.001		20.866		26.133		30.382		31.859
m Sección en roca (q)					60.970	0,132	8.048	0,161	9.816	0,269	16.401	0,343	20.913	0,403	24.571	0,424	25.851
m Sección en tierra (q)					32.830	0,085	2.791	0,097	3.185	0,136	4.465	0,159	5.220	0,177	5.811	0,183	6.008
3 TUNELES							192		900		44.4		400				704
m Túnel (q); P.K. 81+338					627	0,307	192	0,415	260 260	0,660	414 414	0,778	488 488	0,881	<u>552</u> 552	0,931	<u>584</u> 584
m Tunei (q); P.K. 81+338					027	0,307	192	0,415	200	0,660	414	0,778	488	0,881	332	0,931	384
4 SIFONES					10.155		1.625		3.128		7.200		9.556		11.638		12.572
m Sifón (q); P.K. 9+417					230	0,160	37	0,308	71	0,709	163	0,941	216	1.146	264	1,238	285
m Sifón (q); P.K. 12+511					256	0,160	41	0,308	79	0,709	182	0,941	241	1,146	293	1,238	317
m Sifón (q); P.K. 15+399					413	0,160	66	0,308	127	0,709	293	0,941	388	1,146	473	1,238	511
m Sifón (q); P.K. 21+613					225	0,160	36	0.308	69	0,709	159	0,941	211	1,146	258	1.238	278
m Sifón (q); P.K. 22+504					87	0,160	14	0,308	27	0,709	62	0,941	82	1,146	100	1,238	108
m Sifón (q); P.K. 22+742					97	0,160	16	0,308	30	0,709	69	0,941	92	1.146	112	1,238	121
m Sifón (q); P.K. 27+940					213	0,160	34	0,308	65	0,709	151	0,941	200	1,146	244	1,238	263
m Sifón (q); P.K. 47+071					333	0,160	53	0,308	103	0,709	236	0,941	314	1,146	382	1,238	413
m Sifón (q); P.K. 54+214					1.778	0,160	284	0,308	547	0,709	1.260	0,941	1.673	1,146	2.037	1,238	2.201
· •					423			0,308		· ·			398				
m Sifón (q); P.K. 57+543						0,160	68		130	0,709	300	0,941		1,146	485	1,238	524
m Sifón (q); P.K. 58+718					135	0,160	22	0,308	42	0,709	96	0,941	127	1,146	155	1,238	168
m Sifón (q); P.K. 60+472					371	0,160	59	0,308	114	0,709	263	0,941	349	1,146	426	1,238	460
m Sifón (q); P.K. 64+479					353	0,160	57	0,308	109	0,709	250	0,941	332	1,146	405	1,238	437
m Sifón (q); P.K. 67+150					164	0,160	26	0,308	50	0,709	116	0,941	154	1,146	187	1,238	203
m Sifón (q); P.K. 68+309					379	0,160	61	0,308	117	0,709	269	0,941	356	1,146	434	1,238	469
m Sifón (q); P.K. 70+591					141	0,160	23	0,308	44	0,709	100	0,941	133	1,146	162	1,238	175
m Sifón (q); P.K. 72+117					271	0,160	43	0,308	83	0,709	192	0,941	255	1,146	310	1,238	335
m Sifón (q); P.K. 74+051					206	0,160	33	0,308	63	0,709	146	0,941	194	1,146	236	1,238	255
m Sifón (q); P.K. 74+477					203	0,160	33	0,308	63	0,709	144	0,941	191	1,146	233	1,238	252
m Sifón (q); P.K. 75+878					193	0,160	31	0,308	60	0,709	137	0,941	182	1,146	221	1,238	239
m Sifón (q); P.K. 77+486					208	0,160	33	0,308	64	0,709	147	0,941	196	1,146	238	1,238	258
m Sifón (q); P.K. 78+818					246	0,160	39	0,308	76	0,709	174	0,941	231	1,146	281	1,238	304
m Sifón (q); P.K. 79+352					493	0,160	79	0,308	152	0,709	350	0,941	464	1,146	565	1,238	611
m Sifón (q); P.K. 81+188	l	l			149	0,160	24	0,308	46	0,709	106	0,941	140	1,146	171	1,238	185
m Sifón (q); P.K. 84+132	l	l			270	0,160	43	0,308	83	0,709	191	0,941	254	1,146	309	1,238	334
m Sifón (q); P.K. 84+810	l	l			217	0,160	35	0,308	67	0,709	154	0,941	205	1,146	249	1,238	269
m Sifón (q); P.K. 85+261	l	l			212	0,160	34	0,308	65	0,709	150	0,941	199	1,146	242	1,238	262
m Sifón (q); P.K. 85+998	l	l			285	0,160	46	0,308	88	0,709	202	0,941	268	1,146	326	1,238	353
m Sifón (q); P.K. 88+537		ĺ			780	0,160	125	0,308	240	0,709	553	0,941	734	1,146	894	1,238	966
m Sifón (q); P.K. 100+161	l	l			249	0,160	40	0,308	77	0,709	176	0,941	234	1,146	285	1,238	308
m Sifón (q); P.K. 104+003	l	l			342	0,160	55	0,308	105	0,709	243	0,941	322	1,146	392	1,238	424
m Sifón (q); P.K. 104+726					233	0,160	37	0,308	72	0,709	165	0,941	219	1,146	267	1,238	288
PRESUPUESTO DE EJECUCION MATERIAL							15.583		21.156		38.747		49.602		58.766		62.450
GASTOS GENERALES Y BENEFICIO INDUS	TRIA		6) (M Pts.): AL (m Pts.)				3.584		4.866		8.912		11.408		13.516		14.363
		19.167		26.022		47.659		61.010		72.282		76.813					
			. (16%) (M	Pts.):			3.067		4.164		7.625		9.762		11.565		12.290
PRESUPUESTO DE EJECUCION POR CONTI				_			22.234		30.186		55.284		70.772		83.847		89.103
PRESUPUESTO CONOCIMIENTO DE LA AL	MIN	ISTRA	CIÓN (M	Pts.):			23.579		32.012		58.629		75.053		88.920		94.494

q Caudal contínuo de trasvase

Tabla 53. Conducción Ebro-Castellón Norte. Valoración detallada

A Altura de las presas L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación H Alturas geométricas de los bombeos o de las turbinaciones

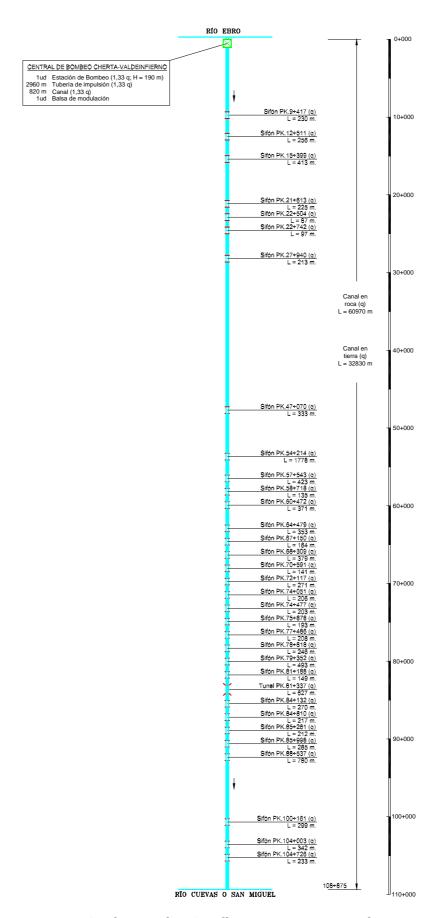


Figura 54. Conducción Ebro-Castellón Norte. Esquema en planta

Figura 55. Conducción Ebro-Castellón Norte. Esquema en alzado

2.5. CONDUCCIÓN CASTELLÓN NORTE-MIJARES

La función de costes de este tramo es la que se muestra en la figura adjunta.

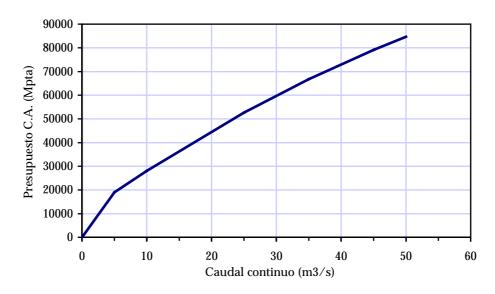


Figura 56. Conducción Castellón Norte - Mijares. Función de coste

Respecto a los costes de circulación, habría que considerar únicamente los debidos al consumo energético en la elevación de Cuevas de Vinromá. El coeficiente energético resultante es de 0,3 kWh/m³ con un precio de la energía de 8 pts/kWh, lo que supone unos costes totales de flujo del orden de 2,7 pts/m³, que llegan a 3,5 para pequeñas capacidades. Las tablas adjuntas muestran el detalle de tales estimaciones.

-	Q	h_{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
	(m ³ /s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
-	5,0	18	5	800	2,7	1583	103,0	17,4	120,4	9,3	0,4	9,0
	10,0	18	5	1100	2,8	1583	103,0	12,7	115,7	17,8	0,4	8,0
	25,0	18	5	1800	2,6	1583	103,0	5,7	108,7	41,8	0,3	8,0
	35,0	18	5	2100	2,7	1583	103,0	4,9	107,9	58,1	0,3	8,0
	45,0	18	5	2400	2,7	1583	103,0	4,0	107,0	74,0	0,3	8,0
	50,0	18	5	2600	2,5	1583	103,0	3,2	106,2	81,7	0,3	8,0

Tabla 54. Conducción Castellón Norte - Mijares. Coeficientes energéticos en las elevaciones

-	Turbin	aciones	Eleva	ciones	Varios	To	otal	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	0,0	0,0	0,4	9,0	0,0	0,4	9,0	3,5
10,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,0
25,0	0,0	0,0	0,3	8,0	0,0	0,3	8,0	2,8
35,0	0,0	0,0	0,3	8,0	0,0	0,3	8,0	2,8
45,0	0,0	0,0	0,3	8,0	0,0	0,3	8,0	2,7
50,0	0,0	0,0	0,3	8,0	0,0	0,3	8,0	2,7

Tabla 55. Conducción Castellón Norte - Mijares. Costes totales de circulación

				q (m ³ /s)													
						5.	0	10		25		35		45	0	50	
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACION CUEVAS DE VINROMA	.,		· , ,				1.856	, ,	3.282	, , , , , ,	7.190		9.530		11.677		12.682
Ud Estación de bombeo (1,33 q)				103,0	1	1.162	1.162	2.112	2.112	4.716	4.716	6.272	6.272	7.692	7.692	8.351	8.351
m Tubería de impulsión (1,33 q)					1.583	0,169	268	0,293	464	0,677	1.072	0,945	1.496	1,222	1.934	1,363	2.157
Ud Balsa de modulación			21600.q		2	213	426	353	706	701	1.402	881	1.762	1.026	2.051	1.087	2.174
2 <u>CANAL</u>					31.745		3.638		4.359		6.977		8.727		10.139		10.629
m Sección en roca (q)					19.999	0,132	2.640	0,161	3.220	0,269	5.380	0,343	6.860	0,403	8.060	0,424	8.480
m Sección en tierra (q)					11.746	0,085	998	0,097	1.139	0,136	1.597	0,159	1.868	0,177	2.079	0,183	2.149
3 TUNELES							4.681		6.328		10.064		11.864		13.434		14.197
m Túnel (q); P.K. 15+716					15249	0,307	4.681	0,415	6.328	0,660	10.064	0,778	11.864	0,881	13.434	0,931	14.197
4 emovins																	
4 <u>SIFONES</u>					14.886		2.382		4.585		10.554		14.008		17.060		18.429
m Sifón (q); P.K. 1+668					446	0,160	71	0,308	137	0,709	316	0,941	420	1,146	511	1,238	553
m Sifón (q); P.K. 11+706					297	0,160	48		92	0,709	211	0,941	280	1,146	340	1,238	368
m Sifón (q); P.K. 13+230					156	0,160	25	0,308	48	0,709	111	0,941	147	1,146	179	1,238	193
m Sifón (q); P.K. 13+457					766	0,160	123	0,308	236	0,709	543	0,941	721	1,146	878	1,238	949
m Sifón (q); P.K. 14+310					1.357	0,160	217	0,308	418	0,709	962	0,941	1.277	1,146	1.555	1,238	1.680
m Sifón (q); P.K. 31+038					383	0,160	61	0,308	118	0,709	272	0,941	361	1,146	439	1,238	475
m Sifón (q); P.K. 33+982					888	0,160	142	0,308	274	0,709	630	0,941	836	1,146	1.018	1,238	1.100
m Sifón (q); P.K. 35+623					521	0,160	83	0,308	161	0,709	370	0,941	491	1,146	597	1,238	645
m Sifón (q); P.K. 37+774					1.275	0,160	204	0,308	393	0,709	904	0,941	1.200	1,146	1.461	1,238	1.579
m Sifón (q); P.K. 39+141					516	0,160	83	0,308	159	0,709	366	0,941	486	1,146	592	1,238	639
m Sifón (q); P.K. 39+726					813	0,160	130	0,308	251	0,709	577	0,941	765	1,146	932	1,238	1.007
m Sifón (q); P.K. 40+633					489	0,160	78	.,	151	0,709	347	0,941	460	1,146	560	1,238	605
m Sifón (q); P.K. 41+457					295	0,160	47	0,308	91	0,709	209	0,941	278	1,146	338	1,238	365
m Sifón (q); P.K. 42+203					404	0,160	65	0,308	124	0,709	286	0,941	380	1,146	463	1,238	500
m Sifón (q); P.K. 43+700					229	0,160	37	0,308	70	0,709	162	0,941	215	1,146	262	1,238	283
m Sifón (q); P.K. 45+894					386	0,160	62	0,308	119	0,709	274		363	1,146	443	1,238	478
m Sifón (q); P.K. 47+614					405	0,160	65	0,308	125	0,709	287	0,941	381	1,146	464	1,238	501
m Sifón (q); P.K. 49+020					352	0,160	56	0,308	108	0,709	249	0,941	331	1,146	403	1,238	436
m Sifón (q); P.K. 50+397					329	0,160	53	0,308	101	0,709	233	0,941	310	1,146	377	1,238	407
m Sifón (q); P.K. 50+894			l	İ	2.685	0,160	430	0,308	827	0,709	1.904		2.527	1,146	3.077	1,238	3.324
m Sifón (q); P.K. 57+192			l	İ	814	0,160	130	0,308	251	0,709	577	0,941	766	1,146	933	1,238	1.007
m Sifón (q); P.K. 59+292				1	649 429	0,160 0,160	104 69	0,308 0,308	200	0,709	460	0,941	611	1,146	744	1,238	804
m Sifón (q); P.K. 63+033	m Sifón (q); P.K. 63+033								132	0,709	304	0,941	404	1,146	492	1,238	532
			l	İ				1									
DESCRIPTION OF SERVICE				10		10		04 707		44.40-		F0 040		FF 00-			
PRESUPUESTO DE EJECUCION MATERIAL (12.558		18.555		34.786		44.129		52.310		55.937
GASTOS GENERALES Y BENEFICIO INDUST	RIA						2.888	1	4.268		8.001		10.150		12.031		12.866
			AL (m Pts.				15.446	1	22.823		42.786		54.278		64.341		68.803
			(16%) (M	Pts.):			2.471	1	3.652		6.846		8.685		10.295		11.008
PRESUPUESTO DE EJECUCION POR CONTR							17.917	l	26.474		49.632		62.963		74.636		79.811
PRESUPUESTO CONOCIMIENTO DE LA AD	MIN	ISTRA	CIÓN (M	Pts.):			19.001		28.076		52.635		66.772		79.151		84.640

q Caudal contínuo de trasvase

Tabla 56. Valoración de la conducción Castellón Norte – Mijares

Altura de las presas
 L Longitud de coronación de las presas
 V Volúmenes de las balsas de modulación
 H Alturas geométricas de los bombeos o de las turbinaciones

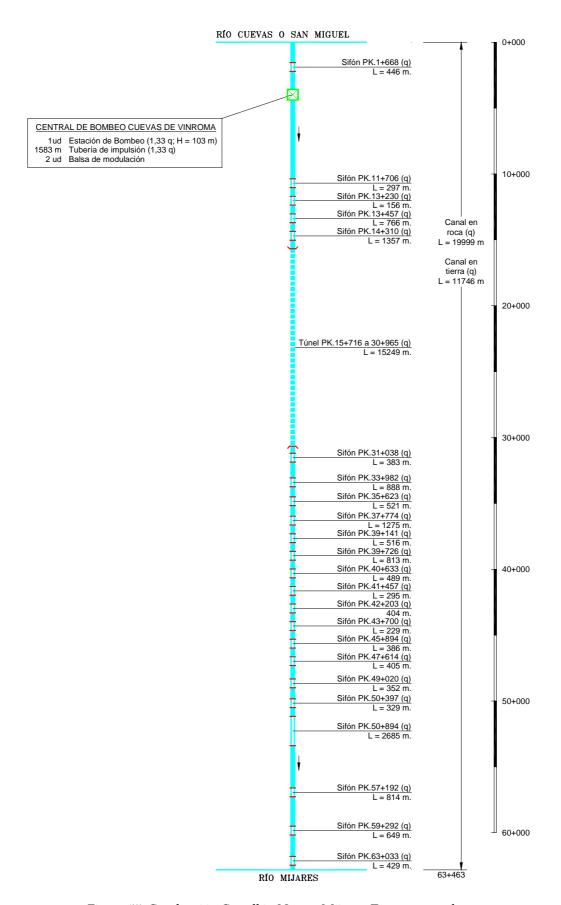


Figura 57. Conducción Castellón Norte - Mijares. Esquema en planta

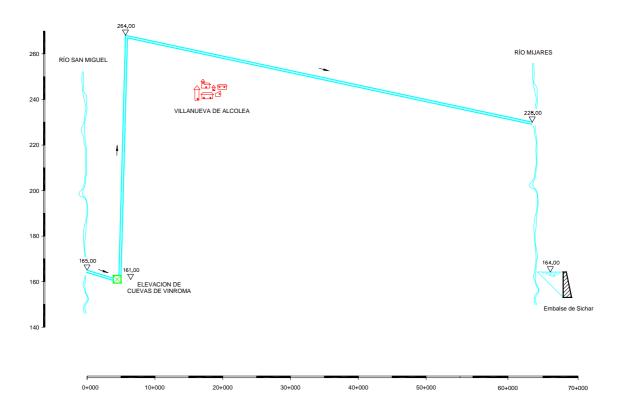


Figura 58. Conducción Castellón Norte - Mijares. Esquema en alzado.

2.6. CONDUCCIÓN MIJARES-CASTELLÓN SUR

La función de costes del tramo es la que se muestra en la figura adjunta.

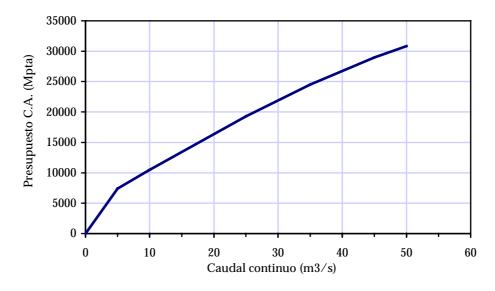


Figura 59. Conducción Mijares - Castellón Sur. Función de coste

Respecto a los costes de circulación de este tramo, al no haber en el mismo ni elevaciones ni turbinaciones, no habría que considerar coste energético alguno debido a estos conceptos. Se adjunta la tabla de valoración de la conducción para distintos caudales.

											q (n	1 ³ /s)					
						5,	0	10	,0	25		35	,0	45	,0	50	,0
	Α	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 CANAL					21.188		2.498		3.004		4.854		6.098		7.102		7.452
m Sección en roca (q)					14.832	0,132	1.958	0,161	2.388	0,269	3.990	0,343	5.087	0,403	5.977	0,424	6.289
m Sección en tierra (q)					6.356	0,085	540	0,097	617	0,136	864	0,159	1.011	0,177	1.125	0,183	1.163
2 TUNELES					2.727		837		1.132		1.800		2.122		2.403		2.539
m Túnel (q); P.K. 1+389					669	0,307	206	0,415	278	0,660	442	0,778	521	0,881	590	0,931	623
m Túnel (q); P.K. 4+765					1605	0,307	493	0,415	666	0,660	1.059	0,778	1.249	0,881	1.414	0,931	1.494
m Túnel (q); P.K. 27+044					453	0,307	139	0,415	188	0,660	299	0,778	352	0,881	399	0,931	422
3 ACUEDUCTOS					2.790		463		695		1.281		1.599		1.875		2.001
m Acueducto (q); P.K. 0+232					214	0,166	36	0,249	53	0,459	98	0,573	123	0,672	144	0,717	154
m Acueducto (q); P.K. 6+370					1134	0,166	188	0,249	282	0,459	521	0,573	650	0,672	762	0,717	813
m Acueducto (q); P.K. 10+990					328	0,166	54	0,249	82	0,459	150	0,573	188	0,672	220	0,717	235
m Acueducto (q); P.K. 12+270					1114	0,166	185	0,249	277	0,459	511	0,573	638	0,672	749	0,717	799
4 <u>SIFONES</u>			6.778		1.085		2.088		4.806		6.378		7.768		8.392		
m Sifón (q); P.K. 0+953					214	0,160	34	0,308	66	0,709	152	0,941	201	1,146	245	1,238	265
m Sifón (q); P.K. 2+420					482	0,160	77	0,308	148	0,709	342	0,941	454	1,146	552	1,238	597
m Sifón (q); P.K. 9+191					983	0,160	157	0,308	303	0,709	697	0,941	925	1,146	1.127	1,238	1.217
m Sifón (q); P.K. 18+386					318	0,160	51	0,308	98	0,709	225	0,941	299	1,146	364	1,238	393
m Sifón (q); P.K. 19+777					918	0,160	147	0,308	283	0,709	651	0,941	864	1,146	1.052	1,238	1.136
m Sifón (q); P.K. 21+035					359	0,160	57	0,308	111	0,709	254	0,941	338	1,146	411	1,238	444
m Sifón (q); P.K. 23+420					1.398	0,160	224	0,308	431	0,709	991	0,941	1.315	1,146	1.602	1,238	1.731
m Sifón (q); P.K. 25+626					353	0,160	57	0,308	109	0,709	250	0,941	332	1,146	405	1,238	437
m Sifón (q); P.K. 26+389					272	0,160	44	0,308	84	0,709	193	0,941	256	1,146	312	1,238	337
m Sifón (q); P.K. 29+171					373	0,160	60	0,308	115	0,709	264	0,941	351	1,146	427	1,238	462
m Sifón (q); P.K. 31+564					883	0,160	141	0,308	272	0,709	626	0,941	831	1,146	1.012	1,238	1.093
m Sifón (q); P.K. 33+259					225	0,160	36	0,308	69	0,709	160	0,941	212	1,146	258	1,238	279
PRESUPUESTO DE EJECUCION M	ATE	RIAL (I	M Pts.)				4.883		6.919		12.741		16.197		19.148		20.383
GASTOS GENERALES Y BENEFIC	IO IN	DUST	RIAL (23	%) (M I	Pts.):		1.123		1.591		2.930		3.725		4.404	ĺ	4.688
		TOTA	L (m Pts.)			6.006		8.510		15.671		19.922		23.552	ĺ	25.071
		I.V.A.	(16%) (M	Pts.):			961		1.362		2.507		3.188		3.768	Í	4.011
PRESUPUESTO DE EJECUCION PO	OR CO	ONTR	ATA (M I	ts.):			6.967		9.872		18.179		23.110		27.320		29.083
PRESUPUESTO CONOCIMIENTO	DE L	A ADI	MINISTR	ACIÓN	(M Pts.):	•	7.389		10.469		19.278		24.508		28.973		30.842

q Caudal contínuo de trasvase

Tabla 57. Valoración de la conducción Mijares - Castellón Sur

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

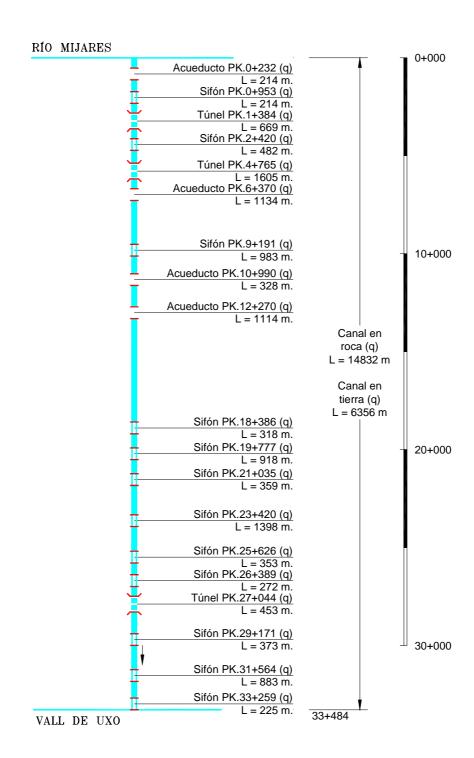


Figura 60. Conducción Mijares - Castellón Sur. Esquema en planta

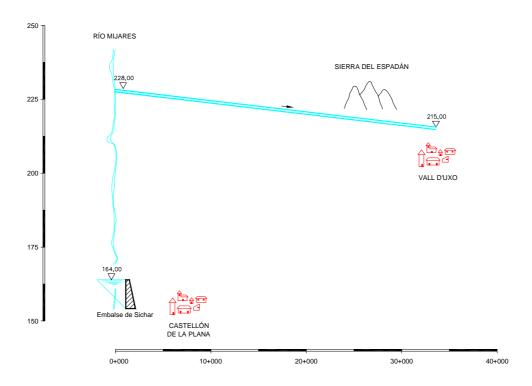


Figura 61. Conducción Mijares - Castellón Sur. Esquema en alzado.

2.7. CONDUCCIÓN CASTELLÓN SUR-TURIA

La función de costes del tramo es la mostrada en la figura adjunta.

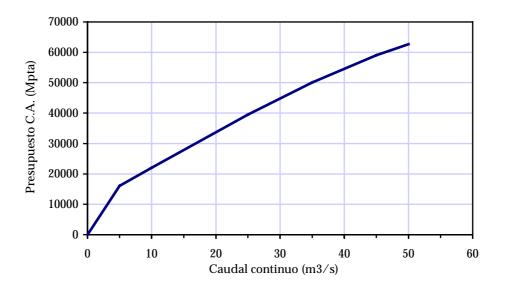


Figura 62. Conducción Castellón Sur - Turia. Función de coste

Respecto a los costes de circulación, al no haber en el mismo ni elevaciones ni turbinaciones, no habría que considerar coste energético alguno debido a estos conceptos. Se adjunta la tabla de valoración de la conducción para distintos caudales.

					q (m²/s)												
						5,	0	10	0	25		35	0	45	0	50	0
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 CANAL					54.532		6.429		7.733		12.493		15.694		18.279		19.179
m Sección en roca (q)					38.172	0,132	5.039	0,161	6.146	0,269	10.268	0,343	13.093	0,403	15.383	0,424	16.185
m Sección en tierra (q)					16.360	0,085	1.391	0,097	1.587	0,136	2.225	0,159	2.601	0,177	2.896	0,183	2.994
2 TUNELES					3.788		1.163		1.572		2.500		2.947		3.337		3.526
m Túnel (q); P.K. 6+104					461	0,307	142	0,415	191	0,660	305	0,778	359	0,881	406	0,931	430
m Túnel (q); P.K. 25+410					154	0,307	47	0,415	64	0,660	102	0,778	120	0,881	136	0,931	144
m Túnel (q); P.K. 26+690					336	0,307	103	0,415	140	0,660	222	0,778	262	0,881	296	0,931	313
m Túnel (q); P.K. 31+709					337	0,307	103	0,415	140	0,660	222	0,778	262	0,881	297	0,931	314
m Túnel (q); P.K. 44+103					635	0,307	195	0,415	263	0,660	419	0,778	494	0,881	559	0,931	591
m Túnel (q); P.K. 50+189					802	0,307	246	0,415	333	0,660	529	0,778	624	0,881	707	0,931	747
m Túnel (q); P.K. 71+444					1.062	0,307	326	0,415	441	0,660	701	0,778	826	0,881	936	0,931	989
(4),						.,		.,		.,		.,		3,002		-,	
3 ACUEDUCTOS					8.221		1.365		2.047		3.773		4.711		5.524		5.894
m Acueducto (q); P.K. 3+347					341	0,166	57	0,249	85	0,459	156	0,573	195	0,672	229	0,717	244
m Acueducto (q); P.K. 6+565					650	0,166	108	0,249	162	0,459	298	0,573	373	0,672	437	0,717	466
m Acueducto (q); P.K. 9+133					239	0,166	40	0,249	59	0,459	110	0,573	137	0,672	160	0,717	171
m Acueducto (q); P.K. 23+338					336	0,166	56	0,249	84	0,459	154	0,573	192	0,672	226	0,717	241
m Acueducto (q); P.K. 23+923					323	0,166	54	0,249	80	0,459	148	0,573	185	0,672	217	0,717	232
m Acueducto (q); P.K. 28+832					228	0,166	38	0,249	57	0,459	105	0,573	131	0,672	153	0,717	164
m Acueducto (q); P.K. 41+708					2.060	0,166	342	0,249	513	0,459	946	0,573	1.181	0,672	1.385	0,717	1.477
m Acueducto (q); P.K. 54+454					3.809	0,166	632	0,249	948	0,459	1.748	0,573	2.182	0,672	2.559	0,717	2.731
m Acueducto (q); P.K. 64+874					235	0,166	39	0,249	59	0,459	108	0,573	135	0,672	158	0,717	169
4 SIFONES					10.360		1.658		3.191		7.345		9.749		11.873		12.826
m Sifón (q); P.K. 0+874					1.211	0,160	194	0,308	373	0,709	858	0,941	1.139	1,146	1.387	1,238	1.499
m Sifón (q); P.K. 9+575					335	0,160	54	0,308	103	0,709	237	0,941	315	1,146	384	1,238	414
m Sifón (q); P.K. 11+341					594	0,160	95	0,308	183	0,709	421	0,941	559	1,146	681	1,238	735
m Sifón (q); P.K. 13+038					2.100	0,160	336	0,308	647	0,709	1.489	0,941	1.976	1,146	2.406	1,238	2.600
m Sifón (q); P.K. 17+437					339	0,160	54	0,308	104	0,709	240	0,941	319	1,146	389	1,238	420
m Sifón (q); P.K. 18+635					337	0,160	54	0,308	104	0,709	239	0,941	317	1,146	386	1,238	417
m Sifón (q); P.K. 20+299					901	0,160	144	0,308	277	0,709	639	0,941	848	1,146	1.032	1,238	1.115
m Sifón (q); P.K. 27+858					471	0,160	75	0,308	145	0,709	334	0,941	443	1,146	540	1,238	583
m Sifón (q); P.K. 36+191					242	0,160	39	0,308	74	0,709	171	0,941	227	1,146	277	1,238	299
m Sifón (q); P.K. 37+020					541	0,160	87	0,308	167	0,709	384	0,941	509	1,146	620	1,238	670
m Sifón (q); P.K. 40+325					897	0,160	144	0,308	276	0,709	636	0,941	844	1,146	1.028	1,238	1.111
m Sifón (q); P.K. 49+296					825	0,160	132	0,308	254	0,709	585	0,941	776	1,146	945	1,238	1.021
m Sifón (q); P.K. 52+166					742	0,160	119	0,308	229	0.709	526	0,941	698	1,146	850	1,238	919
m Sifón (q); P.K. 73+507					356	0,160	57	0,308	110	0,709	252	0,941	335	1,146	408	1,238	441
m Sifón (q); P.K. 75+874					247	0,160	39	0.308	76	0.709	175	0.941	232	1.146	283	1.238	306
					224	0,160	36	0,308	69	0,709	158	0,941	210	1,146	256	1,238	277
III 311011 (q), 1 .K. 10+219	m Sifón (q); P.K. 76+219										136	0,341	210	1,140	230	1,230	211
PRESUPUESTO DE EJECUCION MATERIA	L (M	Pts.)					10.614		14.543		26.112		33.101		39.014		41.426
GASTOS GENERALES Y BENEFICIO IND	USTR	IAL (2	3%) (M P	ts.):			2.441		3.345		6.006		7.613		8.973		9.528
		TOTA	L (m Pts.)			13.056		17.887		32.118		40.714		47.987		50.954
		I.V.A.	(16%) (M	Pts.):			2.089		2.862		5.139		6.514		7.678		8.153
PRESUPUESTO DE EJECUCION POR CON							15.145		20.749		37.257		47.228		55.665		59.106
PRESUPUESTO CONOCIMIENTO DE LA	ADM	INIST	RACIÓN	(M Pts	.):		16.061		22.005		39.511		50.086		59.032		62.682

q Caudal contínuo de trasvase

Tabla 58. Valoración de la conducción Castellón Sur - Turia

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

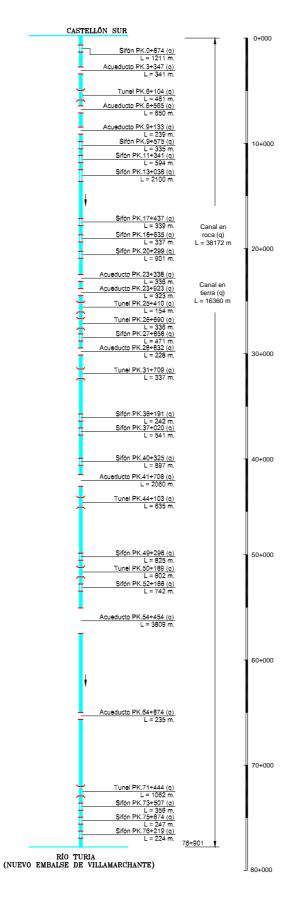


Figura 63. Conducción Castellón Sur - Turia. Esquema en planta

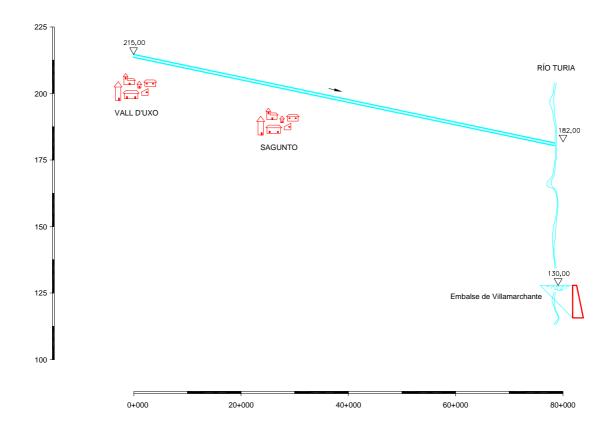


Figura 64. Conducción Castellón Sur - Turia. Esquema en alzado

2.8. CONDUCCIÓN TURIA-TOUS

La función de costes del tramo es la mostrada en la figura adjunta.

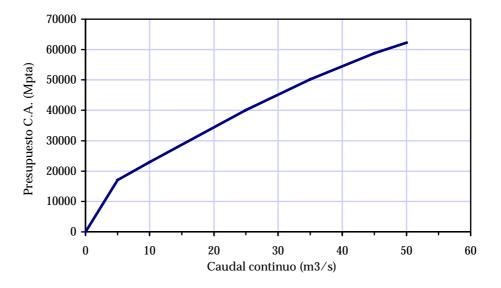


Figura 65. Conducción Turia - Tous. Función de coste

Respecto a los costes de circulación de este tramo, al no haber en el mismo ni elevaciones ni turbinaciones, no habría que considerar coste energético alguno debido a estos conceptos. Se adjunta la tabla de valoración de la conducción para distintos caudales.

					q (m ⁵ /s)												
						5,	,0	10	,0	25		35	,0	45	i,0	50),0
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
I CANAL					<u>57.145</u>		6.469		7.737		12.332		15.395		17.864		18.721
m Sección en roca (q)					34.287	0,132	4.526	0,161	5.520	0,269	9.223	0,343	11.760	0,403	13.818	0,424	14.538
m Sección en tierra (q)					22.858	0,085	1.943	0,097	2.217	0,136	3.109	0,159	3.634	0,177	4.046	0,183	4.183
2 TUNELES					0 100		9 5 1 4		2 200		E 404		6 970		7 91 4		7 699
m Túnel (q); P.K. 23+183					8.188 1.206	0.307	2.514 370	0,415	3.398 501	0.660	<u>5.404</u> 796	0,778	6.370 939	0,881	7.214 1.063	0,931	7.623 1.123
m Túnel (q); P.K. 29+473					764	0,307	235	0,415	317	0,660	504	0,778	594	0,881	673	0,931	711
m Túnel (q); P.K. 38+401					408	0,307	125	0,415	169	0,660	269	0,778	317	0,881	359	0,931	380
						0,307	374			· ·	804						
m Túnel (q); P.K. 41+704					1.218			0,415	505	0,660		0,778	947	0,881	1.073	0,931	1.134
m Túnel (q); P.K. 47+450					1.764	0,307	542	0,415	732	0,660	1.164	0,778	1.373	0,881	1.554	0,931	1.643
m Túnel (q); P.K. 76+555					2.828	0,307	868	0,415	1.174	0,660	1.867	0,778	2.200	0,881	2.492	0,931	2.633
3 ACUEDUCTOS					4.919		817		1.225		2.258		2.819		3.306		3.527
m Acueducto (q); P.K. 0+800					620	0,166	103	0,249	154	0,459	285	0,573	355	0,672	417	0,717	445
m Acueducto (q); P.K. 0+800 m Acueducto (q); P.K. 9+633					862	0,166	143	0,249	215	0,459	396	0,573	494	0,672	579	0,717	618
m Acueducto (q); P.K. 25+531					239	0,166	40	0,249	59	0,459	110	0,573	137	0,672	160	0,717	171
m Acueducto (q); P.K. 33+521					242	0,166	40	0,249	60	0,459	111	0,573	139	0,672	163	0,717	173
m Acueducto (q); P.K. 40+634					428	0,166	71	0,249	106	0,459	196	0,573	245	0,672	287	0,717	307
m Acueducto (q); P.K. 54+392					2.529	0,166	420	0,249	630	0,459	1.161	0,573	1.449	0,672	1.700	0,717	1.813
III Acadetto (q), 1.11. 34+332					2.323	0,100	420	0,245	050	0,433	1.101	0,373	1.443	0,072	1.700	0,717	1.013
4 SIFONES					9.130		1.461		2.812		6.473		8.591		10.463		11.303
m Sifón (q); P.K. 2+692					258	0,160	41	0,308	79	0,709	183	0,941	243	1,146	296	1,238	319
m Sifón (q); P.K. 17+015					443	0,160	71	0,308	137	0,709	314	0,941	417	1,146	508	1,238	549
m Sifón (q); P.K. 18+845					377	0,160	60	0,308	116	0,709	267	0,941	355	1,146	432	1,238	467
m Sifón (q); P.K. 19+710					232	0,160	37	0,308	71	0,709	164	0,941	218	1,146	265	1,238	287
m Sifón (q); P.K. 21+497					1.594	0,160	255	0,308	491	0,709	1.130	0,941	1.500	1,146	1.827	1,238	1.974
m Sifón (q); P.K. 27+751					536	0,160	86	0,308	165	0,709	380	0,941	505	1,146	615	1,238	664
m Sifón (q); P.K. 28+866					408	0,160	65	0,308	126	0,709	289	0,941	384	1,146	467	1,238	505
m Sifón (q); P.K. 32+102					550	0,160	88	0,308	170	0,709	390	0,941	518	1,146	631	1,238	681
m Sifón (q); P.K. 45+412					710	0,160	114	0,308	219	0,709	503	0,941	668	1,146	813	1,238	878
m Sifón (q); P.K. 51+078					558	0,160	89	0,308	172	0,709	396	0,941	525	1,146	640	1,238	691
m Sifón (q); P.K. 53+112					397	0.160	64	0,308	122	0.709	281	0.941	373	1,146	455	1,238	491
m Sifón (q); P.K. 58+020					433	0,160	69	0,308	133	0,709	307	0.941	407	1,146	496	1,238	535
					306	0,160	49	0,308	94	0,709	217	0,941	288	1,146	350	1,238	378
m Sifón (q); P.K. 60+499 m Sifón (q); P.K. 61+319					738	0,160	118	0,308	227	0,709	523	0,941	694	1,146	845	1,238	913
•										· ·							
m Sifón (q); P.K. 63+130				İ	300 346	0,160 0,160	48 55	0,308 0,308	92 106	0,709 0,709	213 245	0,941 0,941	282 325	1,146 1,146	344 396	1,238 1,238	371 428
m Sifón (q); P.K. 64+151										· ·							
m Sifón (q); P.K. 67+297					205	0,160	33	0,308	63	0,709	145	0,941	193	1,146	235	1,238	254
m Sifón (q); P.K. 67+821					431 309	0,160 0,160	69 49	0,308 0,308	133 95	0,709	306	0,941	406	1,146	494	1,238	534
m Siron (q); P.K. /1+142	n Sifón (q); P.K. 71+142									0,709	219	0,941	291	1,146	354	1,238	383
				l													
PRESUPUESTO DE EJECUCION MATERIAL	M Da	-)					11.260		15.172		26.467		33.175		38.846		41.174
GASTOS GENERALES Y BENEFICIO INDUS) (M Dtc.)				2.590		3.490		6.087		7.630		38.846 8.935		9.470
GASTOS GENERALES I BENEFICIO INDUS.	. MIA		L (m Pts.)				13.850		3.490 18.662		32.555		40.806		47.780		50.644
							2.216		2.986		32.333 5.209		6.529		7.645	1	8.103
BRECHBUECTO DE EJECUCION DOD CONTRE	I.V.A. (16%) (M Pts.): UESTO DE EJECUCION POR CONTRATA (M Pts.):										37.763		47.334		55.425	1	58.747
			-	D4-)			16.066		21.648							1	
PRESUPUESTO CONOCIMIENTO DE LA AD	IVIIN.	ISTRA	CION (M	Pts.):			17.038	l	22.958	l	40.048	l	50.198	l	58.779	l	62.301

q Caudal contínuo de trasvase

Tabla 59. Valoración de la conducción Turia - Tous

A Altura de las presas

L Longitud de coronación de las presas V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

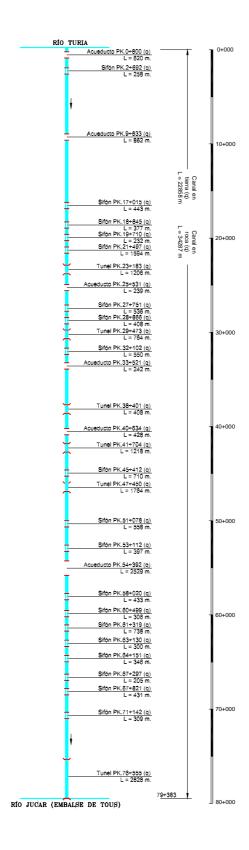


Figura 66. Conducción Turia - Tous. Esquema en planta

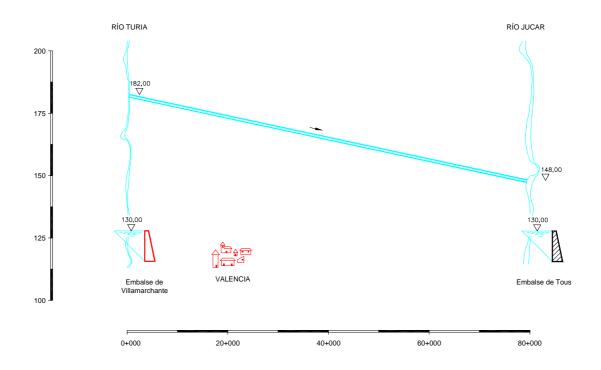


Figura 67. Conducción Turia - Tous. Esquema en alzado

2.9. CONDUCCIÓN TOUS-VILLENA

La función de costes de este tramo es la que mostrada en la gráfica adjunta.

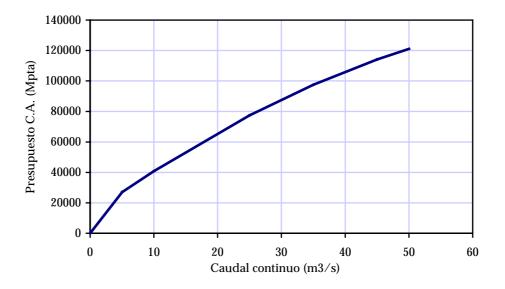


Figura 68. Conducción Tous - Villena. Función de coste

Respecto a sus costes de circulación, habría que considerar únicamente el consumo energético debido a las elevaciones de Tous y Vallada. El coeficiente energético resulta ser de1,3 kWh/m³ con un precio de la energía de 8 pts/kWh, lo que suponen unos costes de flujo globales del tramo de 10,8 pts/m³. Las tablas adjuntas muestran el detalle de tales estimaciones.

-	Q	h _{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
	(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
-	5,0	18	4	900	2,6	2878	413,8	26,3	440,1	33,8	1,4	8,0
	10,0	18	4	1300	2,5	2878	413,8	14,8	428,6	65,9	1,4	8,0
	25,0	18	4	2000	2,7	2878	413,8	9,3	423,1	162,6	1,4	8,0
	35,0	18	4	2400	2,6	2878	413,8	6,9	420,7	226,3	1,3	8,0
	45,0	18	4	2700	2,6	2878	413,8	6,1	419,9	290,5	1,3	8,0
	50,0	18	4	2900	2,5	2878	413,8	5,1	418,9	322,0	1,3	8,0

Tabla 60. Conducción Tous - Villena. Coeficientes energéticos en las elevaciones

	Turbin	aciones	Eleva	ciones	Varios	To	otal	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	0,0	0,0	1,4	8,0	0,0	1,4	8,0	11,3
10,0	0,0	0,0	1,4	8,0	0,0	1,4	8,0	11,0
25,0	0,0	0,0	1,4	8,0	0,0	1,4	8,0	10,8
35,0	0,0	0,0	1,3	8,0	0,0	1,3	8,0	10,8
45,0	0,0	0,0	1,3	8,0	0,0	1,3	8,0	10,8
50,0	0,0	0,0	1,3	8,0	0,0	1,3	8,0	10,7

Tabla 61. Conducción Tous - Villena. Costes totales de circulación

						q (m³/s)											
						5,0 10,0			25,0 35,0			i.0	45,0		50,0		
	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACION DE TOUS							2.376		4.259		9.299		12.200		14.754		15.904
Ud Estación de bombeo (1,33 q)				153,0	1	1.620	1.620	2.980	2.980	6.573	6.573	8.591	8.591	10.313	10.313	11.065	11.065
m Tubería de impulsión (1,33 q)					1.955	0,169	330	0,293	573	0,677	1.324	0,945	1.848	1,222	2.389	1,363	2.665
Ud Balsa de modulación			21600.q		2	213	426	353	706	701	1.402	881	1.762	1.026	2.051	1.087	2.174
2 ELEVACION DE VALLADA							3.072		5.620		11.852		14.862		16.976		17.699
Ud Estación de bombeo (1,33 q)				260,8	1	2.490	2.490	4.643	4.643	9.824	9.824	12.229	12.229	13.796	13.796	14.267	14.267
m Tubería de impulsión (1,33 q)					923	0,169	156	0,293	270	0,677	625	0,945	872	1,222	1.128	1,363	1.258
Ud Balsa de modulación			21600.q		2	213	426	353	706	701	1.402	881	1.762	1.026	2.051	1.087	2.174
3 <u>CANAL</u>					47.584		5.297		6.321		10.015		12.469		14.445		15.130
m Sección en roca (q)					26.647	0,132	3.517	0,161	4.290	0,269	7.168	0,343	9.140	0,403	10.739	0,424	11.298
m Sección en tierra (q)					20.937	0,085	1.780	0,097	2.031	0,136	2.847	0,159	3.329	0,177	3.706	0,183	3.831
4 TUNELES																	
					16.133		4.953		6.695		10.647		12.551		14.213		<u>15.019</u>
m Túnel (q); P.K. 4+828					344	0,307	106	0,415	143	0,660	227	0,778	268	0,881	303	0,931	320
m Túnel (q); P.K. 11+432					628	0,307	193	0,415	261	0,660	415	0,778	489	0,881	554	0,931	585
m Túnel (q); P.K. 13+985					1.978	0,307	607	0,415	821	0,660	1.305	0,778	1.538	0,881	1.742	0,931	1.841
m Túnel (q); P.K. 16+201					980	0,307	301	0,415	407	0,660	647	0,778	762	0,881	863	0,931	912
m Túnel (q); P.K. 17+370					710	0,307	218	0,415	294	0,660	468	0,778	552	0,881	625	0,931	661
m Túnel (q); P.K. 22+682					184	0,307	56	0,415	76	0,660	121	0,778	143	0,881	162	0,931	171
m Túnel (q); P.K. 23+652					931	0,307	286	0,415	386	0,660	615	0,778	724	0,881	820	0,931	867
m Túnel (q); P.K. 24+988					4.003	0,307	1.229	0,415	1.661	0,660	2.642	0,778	3.114	0,881	3.527	0,931	3.727
m Túnel (q); P.K. 57+711					6.375	0,307	1.957	0,415	2.646	0,660	4.207	0,778	4.960	0,881	5.616	0,931	5.935
5 ACUEDUCTOS					520		<u>86</u>		129		239		298		349		373
m Acueducto (q); P.K. 22+866					123	0,166	20	0,249	31	0,459	57	0,573	71	0,672	83	0,717	88
m Acueducto (q); P.K. 31+053					396	0,166	66	0,249	99	0,459	182	0,573	227	0,672	266	0,717	284
6 <u>SIFONES</u>					12.882		2.061		3.968		9.133		12.122		14.762		15.947
m Sifón (q); P.K. 1+538					998	0,160	160	0,308	308	0,709	708	0,941	939	1,146	1.144	1,238	1.236
m Sifón (q); P.K. 5+887					2.607	0,160	417	0,308	803	0,709	1.848	0,941	2.453	1,146	2.988	1,238	3.227
m Sifón (q); P.K. 21+156					367	0,160	59	0,308	113	0,709	260	0,941	345	1,146	421	1,238	454
m Sifón (q); P.K. 22+449					152	0,160	24	0,308	47	0,709	107	0,941	143	1,146	174	1,238	188
m Sifón (q); P.K. 33+140					2.480	0,160	397	0,308	764	0,709	1.758	0,941	2.334	1,146	2.842	1,238	3.070
m Sifón (q); P.K. 36+544					1.526	0,160	244	0,308	470	0,709	1.082	0,941	1.436	1,146	1.749	1,238	1.889
m Sifón (q); P.K. 43+507					380	0,160	61	0,308	117	0,709	269	0,941	357	1,146	435	1,238	470
m Sifón (q); P.K. 44+950					790	0,160	126	0,308	243	0,709	560	0,941	744	1,146	906	1,238	979
m Sifón (q); P.K. 47+628					440	0,160	70	0,308	135	0,709	312	0,941	414	1,146	504	1,238	544
m Sifón (q); P.K. 72+386					3.142	0,160	503	0,308	968	0,709	2.228	0,941	2.957	1,146	3.601	1,238	3.890
PRESUPUESTO DE EJECUCION MATERIAL (M Pts.)							17.846		26.992		51.186		64.502		75.499		80.072
GASTOS GENERALES Y BENEFICIO INDUSTRIAL (23%) (M Pts.):							4.105		6.208		11.773		14.835		17.365		18.417
TOTAL (m Pts.)							21.950		33.200		62.958		79.337		92.863		98.489
I.V.A. (16%) (M Pts.):							3.512		5.312		10.073		12.694		14.858		15.758
PRESUPUESTO DE EJECUCION POR CONTRATA (M Pts.):							25.462		38.512		73.032		92.031		107.721		114.247
PRESUPUESTO CONOCIMIENTO DE LA ADMINISTRACIÓN (M Pts.):							27.003		40.842		77.450		97.599		114.238		121.159
TRESCIOESTO CONOCIMIENTO DE LA AD		21.003		40.042		11.430		31.333	l	114.230		121.133					

q Caudal contínuo de trasvase

Tabla 62. Valoración de la conducción Tous - Villena

A Altura de las presas

Volumenes de las balsas de modulación
H Alturas geométricas de los bombeos o de las turbinaciones

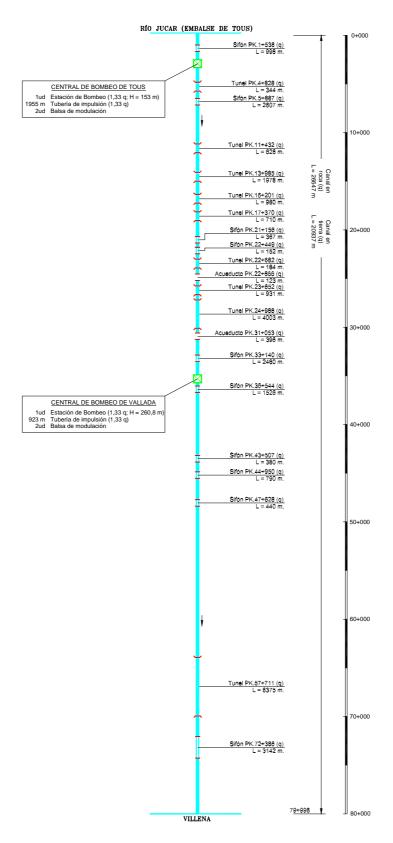


Figura 69. Conducción Tous - Villena. Esquema en planta

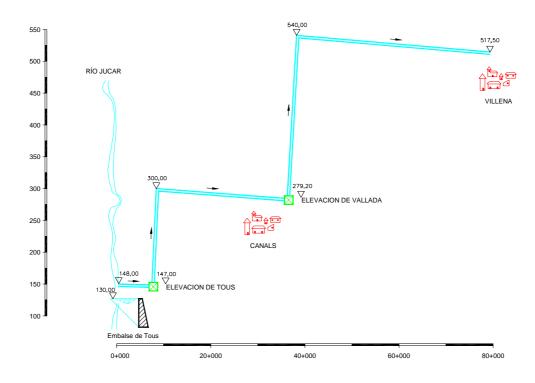


Figura 70. Conducción Tous - Villena. Esquema en alzado

2.10. CONDUCCIÓN VILLENA-BAJO SEGURA

Figura 71. Conducción Villena - Bajo Segura. Función de coste

Respecto a sus costes de circulación, habría que considerar únicamente el beneficio energético generado por tres posibles turbinaciones entre Villena y Crevillente, cuyo coeficiente energético es de -0,8 kWh/m³, con una tarifa eléctrica variable según el caudal entre 13,1 y 7,6 pts/kWh, lo que supone unos costes totales de flujo también variables entre -10 y 6,3 pts/m³, tal y como se muestra en las tablas adjuntas.

-	Q	h_{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
	(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
-	5,0	24	2	1000	3,2	3485	348,0	40,9	307,1	13,54	-0,8	13,1
	10,0	24	2	1400	3,2	3485	348,0	27,2	320,8	28,30	-0,8	10,7
	25,0	24	2	2300	3,0	3485	348,0	12,0	336,0	74,08	-0,8	7,6
	35,0	24	2	2700	3,1	3485	348,0	10,0	338,0	104,33	-0,8	7,6
	45,0	24	2	3000	3,2	3485	348,0	9,4	338,6	134,37	-0,8	7,6
	50,0	24	2	3200	3,1	3485	348,0	8,3	339,7	149,82	-0,8	7,6

Tabla 63. Conducción Villena - Bajo Segura. Coeficientes energéticos en las turbinaciones

		Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
	Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
	(m ³ /s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
_	5,0	-0,8	13,1	0,0	0,0	0,0	-0,8	13,1	-9,9
	10,0	-0,8	10,7	0,0	0,0	0,0	-0,8	10,7	-8,4
	25,0	-0,8	7,6	0,0	0,0	0,0	-0,8	7,6	-6,2
	35,0	-0,8	7,6	0,0	0,0	0,0	-0,8	7,6	-6,3
	45,0	-0,8	7,6	0,0	0,0	0,0	-0,8	7,6	-6,3
	50,0	-0,8	7,6	0,0	0,0	0,0	-0,8	7,6	-6,3

Tabla 64. Conducción Villena - Bajo Segura. Costes totales de circulación

q (m³/s)																	
						5,	.0	10	.0	25		35	.0	45	.0	50	.0
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
1 TURBINACION DE VILLENA - CREVILLE	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
	NIE	1)		105		700	1.008		1.819	0.445	4.173	4014	5.676	5.040	7.123	5 700	7.825
Ud Central de turbinación (q)				105	0.050	722	722	1.344	1.344	3.115	3.115	4.214	4.214	5.248	5.248	5.739	5.739
m Tubería forzada (q)					2.058	0,139	286	0,231	475	0,514	1.058	0,710	1.461	0,911	1.875	1,013	2.085
2 TURBINACION DE VILLENA - CREVILLE	NTE	2)					757		1.366		3.100		4.180		5.197		5.683
Ud Central de turbinación (q)		l		94	1	722	722	1.308	1.308	2.972	2.972	4.002	4.002	4.970	4.970	5.430	5.430
m Tubería forzada (q)					250	0,139	35	0,231	58	0,514	129	0,710	178	0,911	228	1,013	253
		L															
3 TURBINACION DE VILLENA - CREVILLE	NTE	(3)					1.083		1.945		4.418		5.974		7.456		8.168
Ud Central de turbinación (q)				149	1	920	920	1.673	1.673	3.813	3.813	5.138	5.138	6.383	6.383	6.975	6.975
m Tubería forzada (q)					1.177	0,139	164	0,231	272	0,514	605	0,710	836	0,911	1.072	1,013	1.192
4 CANAL					70.348		7.302		8.625		13.310		16.363		18.811		19.655
m Sección en roca (q)					28.139	0,132	3.714	0,161	4.530	0,269	7.569	0,343	9.652	0,403	11.340	0,424	11.931
m Sección en tierra (q)					42.209	0,085	3.588	0,097	4.094	0,136	5.740	0,159	6.711	0,177	7.471	0,183	7.724
5 TUNELES					9.196		2.823		3.816		6.069		7.154		8.101		8.561
m Túnel (q); P.K. 10+181					4.738	0,307	1.455	0,415	1.966	0,660	3.127	0,778	3.686	0,881	4.174	0,931	4.411
m Túnel (q); P.K. 31+492					914	0,307	281	0,415	379	0,660	603	0,778	711	0,881	805	0,931	851
m Túnel (q); P.K. 48,678					278	0,307	85	0,415	115	0,660	183	0,778	216	0,881	245	0,931	259
m Túnel (q); P.K. 49+206					588	0,307	181	0,415	244	0,660	388	0,778	458	0,881	518	0,931	548
m Túnel (q); P.K. 51+228					918	0,307	282	0,415	381	0,660	606	0,778	714	0,881	809	0,931	855
m Túnel (q); P.K. 55+570					1.011	0,307	310	0,415	420	0,660	667	0,778	787	0,881	891	0,931	941
m Túnel (q); P.K. 56+757					456	0,307	140	0,415	189	0,660	301	0,778	355	0,881	402	0,931	424
m Túnel (q); P.K. 57+627					293	0,307	90	0,415	122	0,660	193	0,778	228	0,881	258	0,931	273
6 ACUEDUCTOS					1.200		199		299		<u>551</u>		687		806		860
m Acueducto (q); P.K. 47+515					585	0,166	97	0,249	146	0,459	268	0,573	335	0,672	393	0,717	419
m Acueducto (q); P.K. 65+500					200	0,166	33	0,249	50	0,459	92	0,573	115	0,672	134	0,717	143
m Acueducto (q); P.K. 68+859					415	0,166	69	0,249	103	0,459	190	0,573	238	0,672	279	0,717	297
-																	
7 SIFONES					3.154		<u>505</u>		971		2.236		2.968		3.614		3.904
m Sifón (q); P.K. 1+832					886	0,160	142	0,308	273	0,709	628	0,941	834	1,146	1.015	1,238	1.097
m Sifón (q); P.K. 40+182					439	0,160	70	0,308	135	0,709	311	0,941	413	1,146	503	1,238	543
m Sifón (q); P.K. 45+132					692	0,160	111	0,308	213	0,709	491	0,941	651	1,146	793	1,238	857
m Sifón (q); P.K. 47+178					337	0,160	54	0,308	104	0,709	239	0,941	317	1,146	386	1,238	417
m Sifón (q); P.K. 80+618					800	0,160	128	0,308	246	0,709	567	0,941	753	1,146	916	1,238	990
PRESUPUESTO DE EJECUCION MATERIAL (M Pt	s.)	l		L		13.677		18.841		33.856		43.002		51.109		54.656
	STOS GENERALES Y BENEFICIO INDUSTRIAL (23%) (M Pts.):								4.333		7.787		9.890		11.755		12.571
			L (m Pts.				3.146 16.822		23.174		41.643		52.892		62.864		67.227
			(16%) (M				2.692		3.708		6.663		8.463		10.058		10.756
PRESUPUESTO DE EJECUCION POR CONTR	UPUESTO DE EJECUCION POR CONTRATA (M Pts.):								26.882		48.306		61.355		72.922		77.983
PRESUPUESTO CONOCIMIENTO DE LA AD				Pts.):			19.514 20.695		28.508		51.229		65.067		77.333		82.701
1 MADE CEDITO CONTOCIMIENTO DE LA AD	.,	JIM		£ 13.j.		l	20.000		20.000		31.223		00.007		77.000		06.701

q Caudal contínuo de trasvase

Tabla 65. Valoración de la conducción Villena - Bajo Segura

A Altura de las presas
 L Longitud de coronación de las presas
 V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

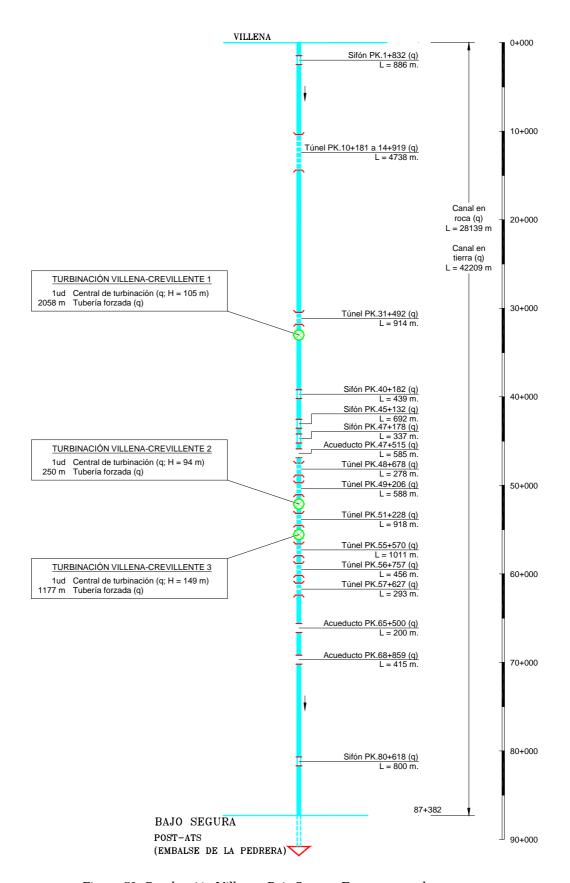


Figura 72. Conducción Villena - Bajo Segura. Esquema en planta

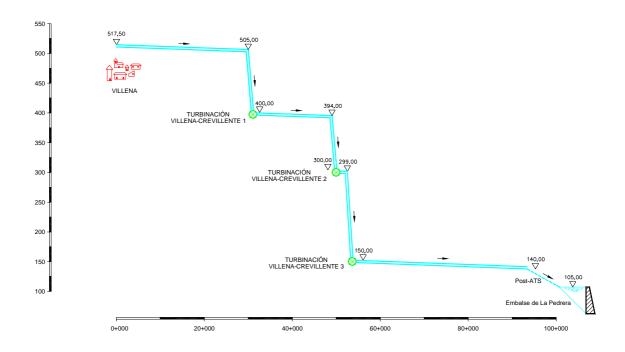


Figura 73. Conducción Villena - Bajo Segura. Esquema en alzado

2.11. CONDUCCIÓN LA MUELA-VILLENA

La función de costes de este tramo es la que se muestra en la figura adjunta.

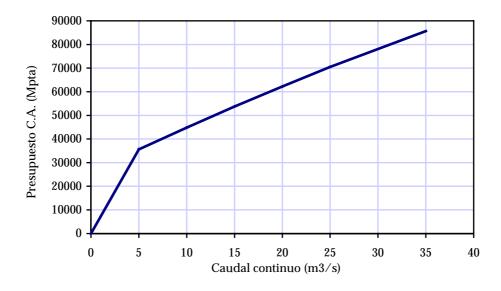


Figura 74. Conducción La Muela - Villena. Función de coste

Respecto a sus costes de operación, habría que considerar tanto el consumo energético requerido por el necesario bombeo inicial (para el que lógicamente debiera usarse la elevación existente de Cortes, cuyo titular es Iberdrola, pagando la cuota que proceda), como el beneficio obtenido en las turbinaciónes proyectadas de

Vallmellós y Sochantre. El coeficiente energético debido a estas dos centrales resulta ser de -0,5 kWh/m³ con un precio de la energía variable entre 7,6 y 13,7 pts/kWh (variable, al igual que en el caso anterior en función del caudal del tramo, debido al escalonamiento de la tarifa eléctrica en función de la potencia instalada). Los costes debidos a la utilización de la estación de bombeo de Cortes se han valorado por su titular en 20 pts/m³, por lo que los costes de circulación globales del tramo serían, aproximadamente, de 15 pts/m³, equivalentes a un coeficiente energético de -0,5 kWh/m³ (saldo entre el coeficiente de los bombeos y turbinaciones de nueva construcción en la conducción) con un precio virtual de la energía de unas -30 pts/kWh. Las tablas adjuntas muestran el detalle de tales estimaciones.

-	Q	h _{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
	(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
-	5,0	24	2	1000	3,2	1202	210,0	14,1	195,9	8,64	-0,5	13,7
	10,0	24	2	1400	3,2	1202	210,0	9,4	200,6	17,70	-0,5	12,4
	15,0	24	2	1700	3,3	1202	210,0	7,5	202,5	26,79	-0,5	10,9
	20,0	24	2	2000	3,2	1202	210,0	5,6	204,4	36,06	-0,5	9,4
	25,0	24	2	2300	3,0	1202	210,0	4,1	205,9	45,39	-0,5	7,8
	35,0	24	2	2700	3,1	1202	210,0	3,5	206,5	63,76	-0,5	7,6

Tabla 66. Conducción La Muela - Villena. Coeficientes energéticos en las turbinaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	-0,5	13,7	0,0	0,0	20,0	-0,5	-28,0	13,4
10,0	-0,5	12,4	0,0	0,0	20,0	-0,5	-28,2	13,9
15,0	-0,5	10,9	0,0	0,0	20,0	-0,5	-29,4	14,6
20,0	-0,5	9,4	0,0	0,0	20,0	-0,5	-30,5	15,3
25,0	-0,5	7,8	0,0	0,0	20,0	-0,5	-31,8	16,0
35,0	-0,5	7,6	0,0	0,0	20,0	-0,5	-32,0	16,2

Tabla 67. Conducción La Muela - Villena. Costes totales de circulación

												3, ,					
									0		q (n		•	Г.			_
						Importe	Importe	1 Importe	Importe	1 Importe	Importe	Z Importe	0 Importe	Importe	5 Importe	Importe	5 Importe
	Α	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m ³)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 TURBINACION DE VALLMELLOS							1.205		1.641		2.353		3.047		3.722		5.018
Ud Central de turbinación (q)				128	1	1.152	1.152	1.571	1.571	2.255	2.255	2.920	2.920	3.566	3.566	4.802	4.802
m Tubería forzada (q)					304	0,175	53	0,231	70	0,324	98	0,419	127	0,514	156	0,710	216
2 TURBINACION DE SOCHANTRE							1.007		1.375		1.977		2.567		3.143		4.258
Ud Central de turbinación (q)				82	1	850	850	1.168	1.168	1.686	1.686	2.191	2.191	2.682	2.682	3.621	3.621
m Tubería forzada (q)				02	898	0.175	157	0.231	207	0.324	291	0.419	376	0.514	462	0.710	638
						.,											
3,- PRESA DE SOCHANTRE							9.300		9.300		9.300		9.300		9.300		9.300
Ud Presa de materiales sueltos	60	1000			1	9.300	9.300	9.300	9.300	9.300	9.300	9.300	9.300	9.300	9.300	9.300	9.300
4 CANAL					39.722		5.680		6.395		7.746		9.176		10.685		13.625
m Canal en roca en tramo I (q)					11132	0,143	1.592	0,161	1.792	0,195	2.171	0,231	2.571	0,269	2.995	0,343	3.818
m Canal en roca en tramo II (q)					7665	0,143	1.096	0,161	1.234	0,195	1.495	0,231	1.771	0,269	2.062	0,343	2.629
m Canal en roca en tramo III (q)					7528	0,143	1.077	0,161	1.212	0,195	1.468	0,231	1.739	0,269	2.025	0,343	2.582
m Canal en roca en tramo IV (q)					12497	0,143	1.787	0,161	2.012	0,195	2.437	0,231	2.887	0,269	3.362	0,343	4.286
m Canal en roca en tramo V (q)					900	0,143	129	0,161	145	0,195	176	0,231	208	0,269	242	0,343	309
5 TUNELES					18.206		6.409		7.555		9.249		10.723		12.016		14.164
m Túnel PK 5 (Tramo I) (q)					6293	0,352	2.215	0,415	2.612	0,508	3.197	0,589	3.707	0,660	4.153	0,778	4.896
m Túnel PK 26 (Tramo II) (q)					2935	0,352	1.033	0,415	1.218	0,508	1.491	0,589	1.729	0,660	1.937	0,778	2.283
m Túnel PK 32 (Tramo II) (q)					3602	0,352	1.268	0,415	1.495	0,508	1.830	0,589	2.122	0,660	2.377	0,778	2.802
m Túnel PK 36 (Tramo III) (q)					841	0,352	296	0,415	349	0,508	427	0,589	495	0,660	555	0,778	654
m Túnel PK 44 (Tramo III) (q)					2089	0,352	735	0,415	867	0,508	1.061	0,589	1.230	0,660	1.379	0,778	1.625
m Túnel PK 46 (Tramo III) (q)					2446	0,352	861	0,415	1.015	0,508	1.243	0,589	1.441	0,660	1.614	0,778	1.903
6 <u>SIFONES</u>					10.892		2.396		3.355		4.880		6.339		7.722		10.249
m Sifón PK 0 (Tramo I) (q)					386	0,220	85	0,308	119	0,448	173	0,582	225	0,709	274	0,941	363
m Sifón PK 11 (Tramo I) (q)					1801	0,220	396	0,308	555	0,448	807	0,582	1.048	0,709	1.277	0,941	1.695
m Sifón PK 19 (Tramo II) (q)					2886	0,220	635	0,308	889	0,448	1.293	0,582	1.680	0,709	2.046	0,941	2.716
m Sifón PK 49 (Tramo IV) (q)					508	0,220	112	0,308	156	0,448	228	0,582	296	0,709	360	0,941	478
m Sifón PK 50 (Tramo IV) (q)					764	0,220	168	0,308	235	0,448	342	0,582	445	0,709	542	0,941	719
m Sifón PK 52 (Tramo IV) (q)					673	0,220	148	0,308	207	0,448	302	0,582	392	0,709	477	0,941	633
m Sifón PK 61 (Tramo IV) (q)							852	0,308	1.193	0,448	1.736	0,582	2.255	0,709	2.747	0,941	3.645
PRESUPUESTO DE EJECUCION MATERI	•						25.997		29.622		35.504		41.153		46.589		56.614
GASTOS GENERALES Y BENEFICIO INC				•	ts.):		5.979		6.813		8.166		9.465		10.715		13.021
		TOTA		-			31.976		36.435		43.670		50.618		57.304		69.635
		I.V.A.			Pts.):		5.116 37.092		5.830		6.987		8.099		9.169		11.142
	PUESTO DE EJECUCION POR CONTRATA (M Pts.):								42.264		50.658		58.716		66.473		80.777
PRESUPUESTO CONOCIMIENTO DE LA	ADI	MINIS	TRAC	CIÓN	(M Pts.):		39.336		44.821		53.722		62.269	1	70.495		85.663

Tabla 68. Valoración de la conducción La Muela - Villena

q Caudal continuo

A Altura de las presasL Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

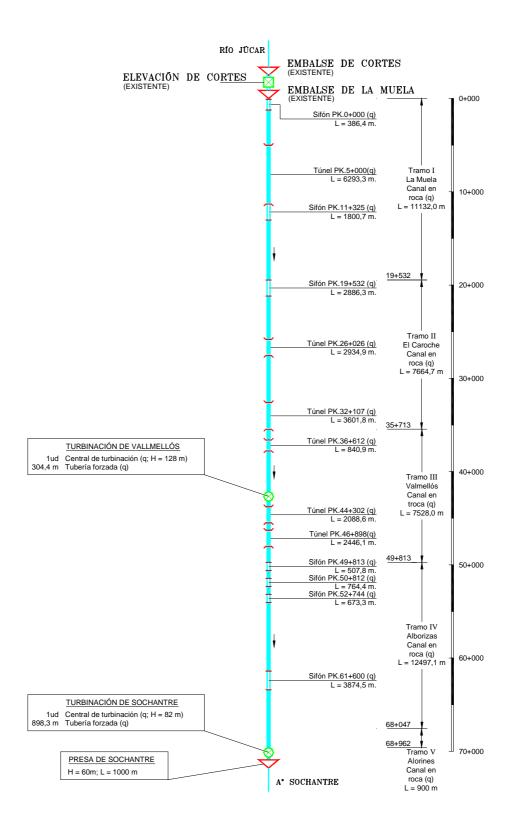


Figura 75. Conducción La Muela - Villena. Esquema en planta

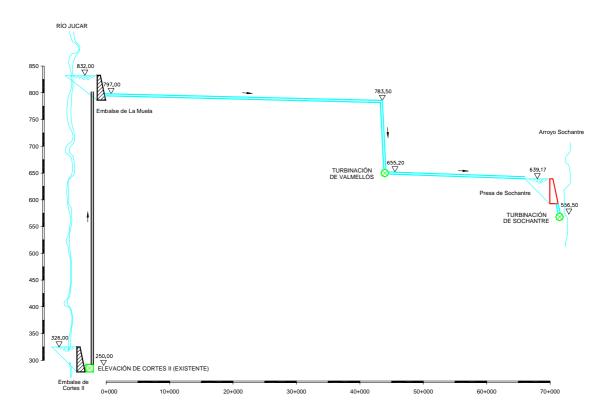


Figura 76. Conducción La Muela - Villena. Esquema en alzado

2.12. CONDUCCIÓN EMBARCADEROS-VILLENA

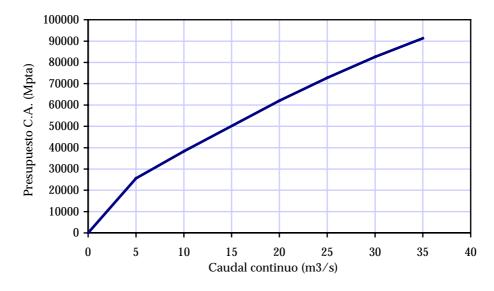


Figura 77. Conducción Embarcaderos - Villena. Función de coste

Respecto a sus costes de circulación, habría que considerar tanto el consumo energético debido a la elevación de Embarcaderos, como el beneficio obtenido en las proyectadas turbinaciones de La Mora y Los Saleros. El coeficiente energético debido a la elevación oscila en torno a 1,3 kWh/m³ (con un precio de la energía de 8 pts/kWh) y el de las turbinaciones entre –0,3 y –0,4 kWh/m³ (con una tarifa eléctrica variable en función de la potencia, y por tanto del caudal, entre 13,7 y 7,6 pts/kWh) lo que supone que el coeficiente energético global de la conducción oscila en torno a 0,9 kWh/m³ con una tarifa equivalente variable entre 6,2 y 8,4 pts/kWh. Con esto, los costes totales de circulación oscilan entre 5,9 y 7,7 pts/m³, tal y como se detalla en las tablas adjuntas.

Q	h _{func}	Nº	D	v	L	H _{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
5,0	24	3	800	3,3	2205	169,8	37,8	132,0	5,82	-0,3	13,7
10,0	24	3	1100	3,5	2205	169,8	27,6	142,2	12,54	-0,3	13,3
20,0	24	3	1600	3,3	2205	169,8	15,0	154,8	27,31	-0,4	10,8
25,0	24	3	1800	3,3	2205	169,8	12,5	157,3	34,69	-0,4	9,6
30,0	24	3	2000	3,2	2205	169,8	10,3	159,5	42,21	-0,4	8,4
35,0	24	3	2200	3,1	2205	169,8	8,4	161,4	49,82	-0,4	7,1

Tabla 69. Conducción Embarcaderos - Villena. Coeficientes energéticos en las turbinaciones

-	Q	h_{func}	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
	(m ³ /s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
	5,0	18	3	1000	2,8	1773	405,0	16,4	421,4	32,4	1,3	8,0
	10,0	18	3	1500	2,5	1773	405,0	7,6	412,6	63,4	1,3	8,0
	20,0	18	3	2100	2,6	1773	405,0	5,0	410,0	126,1	1,3	8,0
	25,0	18	3	2300	2,7	1773	405,0	4,8	409,8	157,5	1,3	8,0
	30,0	18	3	2600	2,5	1773	405,0	3,6	408,6	188,4	1,3	8,0
	35,0	18	3	2800	2,5	1773	405,0	3,3	408,3	219,7	1,3	8,0

Tabla 70. Conducción Embarcaderos - Villena. Coeficientes energéticos en las elevaciones

	Turbina	iciones	Elevac	iones	Varios	To	otal	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m^3)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m3)
5,0	-0,3	13,7	1,3	8,0	0,0	1,0	6,2	6,4
10,0	-0,3	13,3	1,3	8,0	0,0	1,0	6,1	5,9
20,0	-0,4	10,8	1,3	8,0	0,0	0,9	6,8	6,4
25,0	-0,4	9,6	1,3	8,0	0,0	0,9	7,3	6,8
30,0	-0,4	8,4	1,3	8,0	0,0	0,9	7,8	7,2
35,0	-0,4	7,1	1,3	8,0	0,0	0,9	8,4	7,7

Tabla 71. Conducción Embarcaderos - Villena. Costes totales de circulación

												3					
							•	- 10			q (n		•		•	0.5	
						5, Importe	,0 Importe	10 Importe	,0 Importe	20 Importe	,0 Importe	25 Importe	,0 Importe	30 Importe	,0 Importe	35 Importe	,0 Importe
	Α	L	v	Н	l	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACION DE EMBARCADEROS							4.246		7.674		12.969		14.845		16.211		17.068
Ud Estación de bombeo (1,33 q)				405,0	1	3.733	3.733	6.802	6.802	11.403	11.403	12.944	12.944	13.980	13.980	14.511	14.511
m Tubería de impulsión (1,33 q)					1.773	0,169	300	0,293	519	0,547	970	0,677	1.200	0,810	1.436	0,945	1.675
Ud Balsa de modulación			21600.q		1	213	213	353	353	596	596	701	701	796	796	881	881
2 TURBINACION DE LA MORA							831		<u>1.516</u>		2.851		3.499		4.138		4.762
Ud Central de turbinación (q)				86,0	1	620	620	1.166	1.166	2.216	2.216	2.721	2.721	3.211	3.211	3.687	3.687
m Tubería forzada (q)					1515	0,139	211	0,231	350	0,419	635	0,514	779	0,612	927	0,710	1.076
3 TURBINACION DE LOS SALEROS							742		1.345		2.513		3.077		3.628		4.165
Ud Central de turbinación (q)				83,8	1	646	646	1.186	1.186	2.224	2.224	2.722	2.722	3.206	3.206	3.675	3.675
m Tubería forzada (q)					690	0,139	96	0,231	159	0,419	289	0,514	355	0,612	422	0,710	490
4 CANAL																	
4 CANAL					68.861		9.090		11.087		15.907		18.524		21.140		23.619
m Canal Embarcaderos - La Mora (q) m Canal La Mora - Villena (q)					52.630 16.231	0,132 0,132	6.947 2.142	0,161 0,161	8.473 2.613	0,231 0,231	12.158 3.749	0,269 0,269	14.157 4.366	0,307 0,307	16.157 4.983	0,343 0,343	18.052 5.567
iii Canar La Mora - Vinena (q)					10.231	0,132	2.142	0,101	2.013	0,231	3.743	0,203	4.500	0,307	4.303	0,343	3.307
5 ACUEDUCTOS					2.416		<u>401</u>		602		<u>952</u>		1.109		1.251		1.384
m Acueducto (q); P.K. 3+483					709,5	0,166	118	0,249	177	0,394	280	0,459	326	0,518	368	0,573	407
m Acueducto (q); P.K. 5+114					331,2	0,166	55	0,249	82	0,394	130	0,459	152	0,518	172	0,573	190
m Acueducto (q); P.K. 11+911					303,9	0,166	50	0,249	76	0,394	120	0,459	139	0,518	157	0,573	174
m Acueducto (q); P.K. 13+351					347,6	0,166	58	0,249	87	0,394	137	0,459	160	0,518	180	0,573	199
m Acueducto (q); P.K. 14+710 m Acueducto (q); P.K. 18+892					273,4 450,3	0,166 0.166	45 75	0,249 0,249	68 112	0,394 0,394	108 177	0,459 0,459	125 207	0,518 0,518	142 233	0,573 0,573	157 258
III Acueducio (q), F.K. 16+692					430,3	0,100	73	0,249	112	0,394	1//	0,439	207	0,316	233	0,373	236
6 <u>SIFONES</u>					9.964		1.594		3.069		5.799		7.064		8.250		9.376
m Sifón (q); P.K. 5+995					856,4	0,160	137	0,308	264	0,582	498	0,709	607	0,828	709	0,941	806
m Sifón (q); P.K. 8+806					2.559,7	0,160	410	0,308	788	0,582	1.490	0,709	1.815	0,828	2.119	0,941	2.409
m Sifón (q); P.K. 15+584					595,7	0,160	95	0,308	183	0,582	347	0,709	422	0,828	493	0,941	561
m Sifón (q); P.K. 20+821					690,1	0,160	110	0,308	213	0,582	402	0,709	489	0,828	571	0,941	649
m Sifón (q); P.K. 23+156					374,8	0,160	60	0,308	115	0,582	218	0,709	266	0,828	310	0,941	353
m Sifón (q); P.K. 26+555					900,9	0,160	144	0,308	277	0,582	524	0,709	639	0,828	746	0,941	848
m Sifón (q); P.K. 28+384					1.462,7	0,160	234	0,308	451	0,582	851	0,709	1.037	0,828	1.211	0,941	1.376
m Sifón (q); P.K. 30+828					186,5	0,160	30	0,308	57	0,582	109	0,709	132	0,828	154	0,941	175
m Sifón (q); P.K. 32+996					170,6	0,160	27	0,308	53	0,582	99	0,709	121	0,828	141	0,941	161
m Sifón (q); P.K. 33+313					197,2	0,160	32	0,308	61	0,582	115	0,709	140	0,828	163	0,941	186
m Sifón (q); P.K. 33+743					535,7	0,160	86	0,308	165	0,582	312	0,709	380	0,828	444	0,941	504
m Sifón (q); P.K. 40+146					192,5	0,160	31	0,308	59	0,582	112	0,709	136 101	0,828	159	0,941	181
m Sifón (q); P.K. 46+877					143,1	0,160	23	0,308	44	0,582	83	0,709		0,828	118	0,941	135
m Sifón (q); P.K. 64+376 m Sifón (q); P.K. 65+880		1	1	1	194,1 427,0	0,160 0,160	31 68	0,308 0,308	60 132	0,582 0,582	113 249	0,709 0,709	138 303	0,828 0,828	161 354	0,941 0,941	183 402
m Sifón (q); P.K. 79+090					476,6	0,160	76	0,308	147	0,582	277	0,709	338	0,828	395	0,941	448
ш энон (ф. г. к. 7э+оэо	470,0	0,100	70	0,306	147	0,362	211	0,703	336	0,020	333	0,341	440				
PRESUPUESTO DE EJECUCION MATERIA	PRESUPUESTO DE EJECUCION MATERIAL (M Pts.)										40.991		48.118		54.619		60.375
GASTOS GENERALES Y BENEFICIO INDU	STRL			-			3.888		5.817		9.428		11.067		12.562		13.886
			AL (m Pts.				20.791		31.110		50.419		59.186		67.182		74.261
DESCRIPTION OF SECUCION POR CONTRACT	TD A T		. (16%) (M	Pts.):			3.327		4.978		8.067		9.470		10.749		11.882
PRESUPUESTO CONOCIMIENTO DE LA A				M Dia			24.118		36.087		58.487		68.655		77.931		86.142
PRESUPUESTO CONOCIMIENTO DE LA A	DMI	NISTR	ACION (ivi Pts.):			25.577		38.270		62.025		72.809		82.646		91.354

q Caudal contínuo de trasvase

Tabla 72. Valoración de la conducción Embarcaderos - Villena

Altura de las presas
 L Longitud de coronación de las presas
 V Volúmenes de las balsas de modulación
 H Alturas geométricas de los bombeos o de las turbinaciones

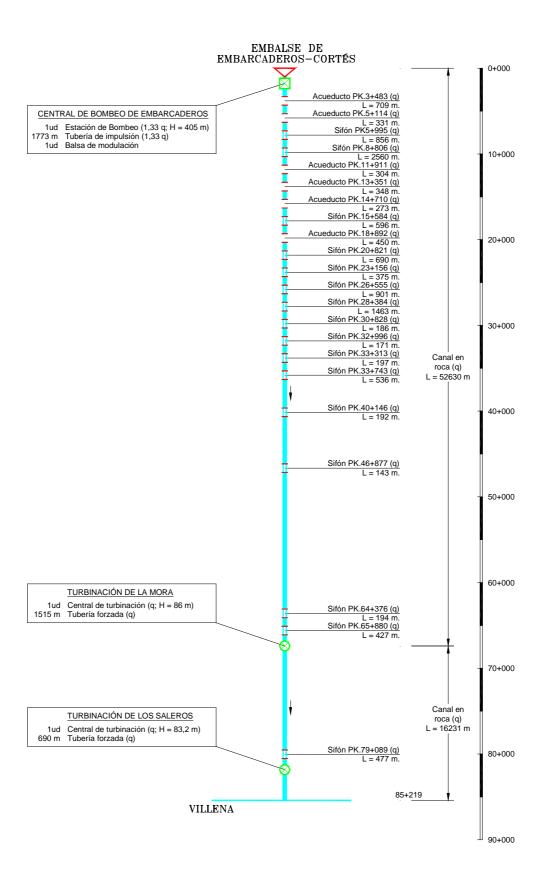


Figura 78. Conducción Embarcaderos - Villena. Esquema en planta

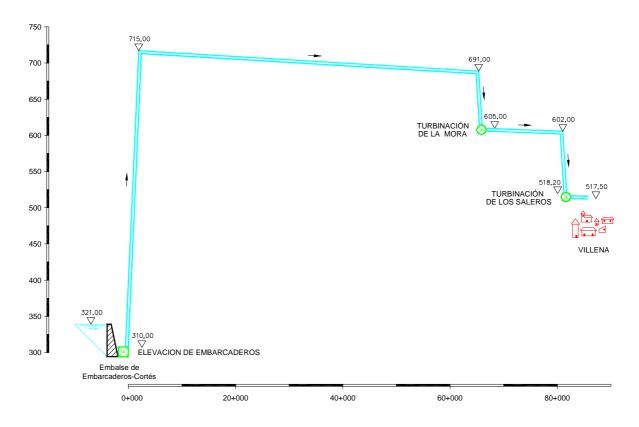


Figura 79. Conducción Embarcaderos - Villena. Esquema en alzado

2.13. CONDUCCIÓN ALTO DUERO-BOLARQUE

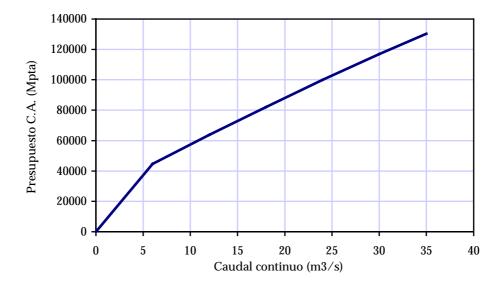


Figura 80. Conducción Alto Duero-Bolarque. Función de coste

Respecto a sus costes de circulación, habría que considerar tanto el consumo energético debido a la inicial elevación de Gormaz, como el beneficio obtenido en las cuatro turbinaciónes proyectadas en el sistema. El coeficiente energético debido a la elevación de Gormaz oscila entre 0,8 y 0,9 kWh/m³ (con un precio de la energía de 8 pts/kWh) y el de las cuatro turbinaciones entre -0,7 y -0,8 kWh/m³ (con una tarifa eléctrica variable en función de la potencia, y por tanto del caudal, entre 7,6 y 12,8 pts/kWh) lo que supone que el coeficiente energético global de la conducción es del orden de 0,1 kWh/m³ con una tarifa equivalente muy variable, entre -8,5 y 12,5 pts/kWh.

No obstante lo anterior, y al igual que ocurría en otras conducciones, dicha alta variabilidad apenas tiene influencia en los costes totales de flujo, que oscilan entre – 0,9 y –1,8 pts/m³, por lo que, a efectos prácticos, puede suponerse que este tramo no tiene costes energéticos (cuantías estimadas inferiores a 1 pta/m³, especialmente en el tramo de caudales entre 15 y 35 m³/s), puesto que sensiblemente se compensan los costes de la energía necesaria en la elevación de Gormaz con los beneficios obtenidos por las turbinaciones previstas. El detalle de estos cálculos puede verse en las tablas adjuntas.

Q	h _{func}	Nº	D	V	L	H _{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
6,0	24	2	1100	3,2	2815	319,0	28,6	290,4	15,37	-0,7	12,8
12,0	24	2	1500	3,4	2815	319,0	21,9	297,1	31,45	-0,7	10,2
18,0	24	2	1900	3,2	2815	319,0	13,9	305,1	48,43	-0,7	7,3
24,0	24	2	2200	3,2	2815	319,0	11,3	307,7	65,12	-0,8	7,6
30,0	24	2	2500	3,1	2815	319,0	9,0	310,0	82,04	-0,8	7,6
35,0	24	2	2700	3,1	2815	319,0	8,1	310,9	95,98	-0,8	7,6

Tabla 73. Conducción Alto Duero - Bolarque. Coeficientes energéticos en las turbinaciones

Q	h _{func}	Nº	D	V	L	H _{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
6,0	20	2	1300	2,7	6033	251,0	36,2	287,2	23,8	0,9	8,0
12,0	20	2	2100	2,1	6033	251,0	11,2	262,2	43,5	0,8	8,0
18,0	20	2	2300	2,6	6033	251,0	15,5	266,5	66,4	0,9	8,0
24,0	20	2	2700	2,5	6033	251,0	11,7	262,7	87,2	0,8	8,0
30,0	20	2	3000	2,5	6033	251,0	10,5	261,5	108,5	0,8	8,0
35,0	20	2	3200	2,6	6033	251,0	10,1	261,1	126,4	0,8	8,0

Tabla 74. Conducción Alto Duero - Bolarque. Coeficientes energéticos en las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	-0,7	12,8	0,9	8,0	0,00	0,2	-8,5	-1,8
10,0	-0,7	10,2	0,8	8,0	0,00	0,1	-6,0	-0,7
15,0	-0,7	7,3	0,9	8,0	0,0	0,1	12,7	1,3
20,0	-0,8	7,6	0,8	8,0	0,0	0,1	11,8	1,0
25,0	-0,8	7,6	0,8	8,0	0,0	0,1	12,3	1,0
35,0	-0,8	7,6	0,8	8,0	0,0	0,1	12,5	0,9

Tabla 75. Conducción Alto Duero - Bolarque. Costes totales de circulación

En este caso, además, habría que considerar el beneficio energético producido por la utilización de la central existente de Entrepeñas en el río Tajo, la cual tiene un coeficiente energético de 0,12 kWh/ m³que, con un precio de 6 pts/kWh supone un beneficio energético de 0,72 pts/m³.

Como ya se ha indicado en el Anejo de Descripción de transferencias esta conducción requiere construir un nuevo embalse en el Alto Duero, el de Gormaz a la altura del pueblo del mismo nombre, destinado exclusivamente al trasvase, que no está previsto en el Plan de cuenca. En cuanto al embalse de Velacha, aguas arriba del anterior y de mayor capacidad, está previsto en el Plan de la Cuenca del Duero por necesidades de regulación propias, con independencia del trasvase. Sin embargo, si se construyen los dos y éste último se destina parcialmente al trasvase, podría aumentarse el volumen derivable. Por ello, con objeto de quedar del lado de la seguridad, se ha incluido la totalidad del coste de la presa de Velacha en la valoración de esta conducción.

											q (n	1 ³ /s)					
						6	3	1	2	13		2	4	3	0	3	15
			1 17	**	1	Importe	Importe										
	A (m)	L (m)	(m3)	H (m)	Medición	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)
1 ELEVACION DE GORMAZ	(111)	(111)	(ms)	(111)	Medicion	(Mpts/dd)	4.270	(Mpis/dd)	7.735	(wps/dd)	10.882	(Mpts/uu)	13.729	(.vrpts/uu)	16.283	(Mpts/dd)	18.18
Ud Estación de bombeo (1,20 q)				251	1	2.783	2.783	5.035	5.035	7.033	7.033	8.789	8.789	10.310	10.310	11.400	11.400
m Tubería de impulsión (1,20 q)					2005	0,179	359	0,313	628	0,449	900	0,588	1.179	0,730	1.464	0,850	1.70
m Sifón (1,20 q) Ud Chimenea de equilibrio					4028	0,226 34	910 34	0,432 34	1.740	0,623 34	2.509 34	0,800 34	3.222	0,963 34	3.879 34	1,088 34	4.382
Ud Balsa de modulación			14400 q		1	184	184	299	299	406	406	505	505	596	596	667	661
2,- PRESA DE GORMAZ			·				534		534		534		534		534		534
Ud Presa de materiales sueltos	30	200			1	534	534	534	534	534	534	534	534	534	534	534	534
3,- PRESA DE VELACHA							1.484		1.484		1.484		1.484		1.484		1.484
Ud Presa de materiales sueltos	35	425			1	1.484	1.484	1.484	1.484	1.484	1.484	1.484	1.484	1.484	1.484	1.484	1.484
4 1ª TURBINACION							417		764		1.102		1.431		1.750		2.008
Ud Central de turbinación (q)				32	1	374	374	691	691	998	998	1.296	1.296	1.582	1.582	1.814	1.814
m Tubería forzada (q)					273	0,157	43	0,268	73	0,381	104	0,495	135	0,612	167	0,710	194
5 2ª TURBINACION							243		447		646		838		1.026		1.178
Ud Central de turbinación (q)				14	1	214	214	397	397	575	575	746	746	912	912	1.046	1.046
m Tubería forzada (q)					186	0,157	29	0,268	50	0,381	71	0,495	92	0,612	114	0,710	132
6 3ª Y 4ª TURBINACIONES							3.700		6.091		8.421		10.686		12.886		14.653
Ud Central de turbinación 3 (q)				146	1	1.073	1.073	1.963	1.963	2.824	2.824	3.656	3.656	4.459	4.459	5.106	5.106
m Tubería forzada 3 (q)				107	535	0,157	84	0,268	143	0,381	204	0,495	265	0,612	327	0,710	380
Ud Central de turbinación 4 (q) m Tubería forzada 4 (q)				127	1821	969 0,157	969 286	1.798 0,268	1.798 488	2.600 0,381	2.600 694	3.377 0,495	3.377 901	4.126 0,612	4.126 1.114	4.731 0,710	4.731 1.293
m Sección tipo 3 en roca (q)					5150	0,137	706	0,174	896	0,216	1.112	0,261	1.344	0,307	1.581	0,343	1.766
m Túnel (q)					1769	0,329	582	0,454	803	0,558	987	0,646	1.143	0,722	1.277	0,778	1.376
m Acueducto Hondo (q)					381	0,183	70	0,280	112	0,367	128	0,446	156	0,518	181	0,573	201
m Acueducto Angosto (q)					424	0,183	78	0,280	168	0,367	128	0,446	156	0,518	181	0,573	201
7 CANAL					109.272		14.070		17.735		21.839		26.234		30.685		34.168
m ST 1 (q); Bombeo a Turbinac. 1 ^a					29270	0,137	4.010	0,174	5.093	0,216	6.322	0,261	7.639	0,307	8.986	0,343	10.040
m ST 1 (q); Turbinación 1 ^a a 2 ^a m ST 1 (q); Turbinación 2 ^a a 3 ^a					50811 11191	0,137 0,137	6.961 1.533	0,174 0,174	8.841 1.947	0,216 0,216	10.975 2.417	0,261 0,261	13.262 2.921	0,307 0,307	15.599 3.436	0,343 0,343	17.428 3.839
m ST 2 (q); Bombeo a Turbinac. 1 ^a					5000	0,087	435	0,103	515	0,118	590	0,134	670	0,148	740	0,159	795
m ST 2 (q); Turbinación 1ª a 2ª					13000	0,087	1.131	0,103	1.339	0,118	1.534	0,134	1.742	0,148	1.924	0,159	2.067
8 TUNELES					9.272		3.050		4.209		5.174		5.990		6.694		7.214
m Túnel (q); P.K.44					791	0,329	260	0,454	359	0,558	441	0,646	511	0,722	571	0,778	615
m Túnel (q); P.K.66					676	0,329	222	0,454	307	0,558	377	0,646	437	0,722	488	0,778	526
m Túnel (q); P.K.94 m Túnel (q); P.K.105					2253 552	0,329 0,329	741 182	0,454 0,454	1.023 251	0,558 0,558	1.257 308	0,646 0,646	1.455 357	0,722 0,722	1.627 399	0,778 0,778	1.753 429
m Túnel (q); P.K.108					180	0,329	59	0,454	82	0,558	100	0,646	116	0,722	130	0,778	140
m Túnel (q); P.K.120					695	0,329	229	0,454	316	0,558	388	0,646	449	0,722	502	0,778	541
m Túnel (q); P.K.121					1723	0,329	567	0,454	782	0,558	961	0,646	1.113	0,722	1.244	0,778	1.340
m Túnel (q); P.K.124					447	0,329 0,329	147	0,454	203	0,558	249	0,646	289	0,722	323	0,778	348
m Túnel (q); P.K.153					1955	0,329	643	0,454	888	0,558	1.091	0,646	1.263	0,722	1.412	0,778	1.521
9 ACUEDUCTOS					7.252		1.327		2.304		3.020		3.671		4.263		4.716
m Acueducto La Peña (q) m Acueducto Los Argollones (q)					621 527	0,183 0,183	114 96	0,280 0,280	157 157	0,367 0,367	206 206	0,446 0,446	250 250	0,518 0,518	290 290	0,573 0,573	321 321
m Acueducto Los Argonolies (q)					431	0,183	79	0,280	101	0,367	132	0,446	161	0,518	186	0,573	206
m Acueducto Parado (q)					757	0,183	139	0,280	224	0,367	294	0,446	357	0,518	414	0,573	458
m Acueducto Escalote (q)					268	0,183	49	0,280	84	0,367	110	0,446	134	0,518	155	0,573	172
m Acuadusto P.K. 108 (a)		Ì			316 385	0,183	58 70	0,280	84 112	0,367	110	0,446	134	0,518	155	0,573	172
m Acueducto P.K. 108 (q) m Acueducto P.K. 106 (q)					385 672	0,183 0,183	70 123	0,280 0,280	112 196	0,367 0,367	147 257	0,446 0,446	178 312	0,518 0,518	207 363	0,573 0,573	229 401
m Acueducto P.K. 100 (q)					645	0,183	118	0,280	210	0,367	275	0,446	335	0,518	389	0,573	430
m Acueducto La Torre (q)					280	0,183	51	0,280	98	0,367	128	0,446	156	0,518	181	0,573	201
m Acueducto Hocino (q)					404	0,183	74	0,280	210	0,367	275	0,446	335	0,518	389	0,573	430
m Acueducto P.K. 147 (q) m Acueducto (q)					496 1086	0,183 0,183	91 199	0,280 0,280	210 364	0,367 0,367	275 477	0,446 0,446	335 580	0,518 0,518	389 673	0,573 0,573	430 745
m Acueducto (q) m Acueducto Las Pilas (q)					364	0,183	67	0,280	98	0,367	128	0,446	156	0,518	181	0,573	201
10 SIFONES																	
m Sifón (q); P.K. 107					2.100 0	0,190	399 0	0,365	767 0	0,529	1.111 0	0,684	1.436 0	0,828	1.739 0	0,941	1.976
m Sifón (q); P.K. 118					2100	0,190	399	0,365	767	0,529	1.111	0,684	1.436	0,828	1.739	0,941	1.976
m Sifón (q); P.K. 147					0	0,190	0	0,365	0	0,529	0	0,684	0	0,828	0	0,941	(
PRESUPUESTO DE EJECUCION MATER				D4- \			29.494		42.072		54.213		66.032		77.343		86.117
GASTOS GENERALES Y BENEFICIO INI	ASTOS GENERALES Y BENEFICIO INDUSTRIAL (23%) (M Pts.): TOTAL (M Pts.)						6.784 36.278		9.676 51.748		12.469 66.682		15.187 81.220		17.789 95.131		19.807 105.924
			. (16%) (M				5.804		8.280		10.669		12.995		15.221		16.948
PRESUPUESTO DE EJECUCION POR CO							42.082		60.028		77.351		94.215		110.352		122.872
PRESUPUESTO CONOCIMIENTO DE LA	AD	MINI	STRACIÓ	N (M	Pts.):		44.628		63.659		82.030		99.915		117.029		130.306

Tabla 76. Valoración de la conducción Alto Duero – Bolarque

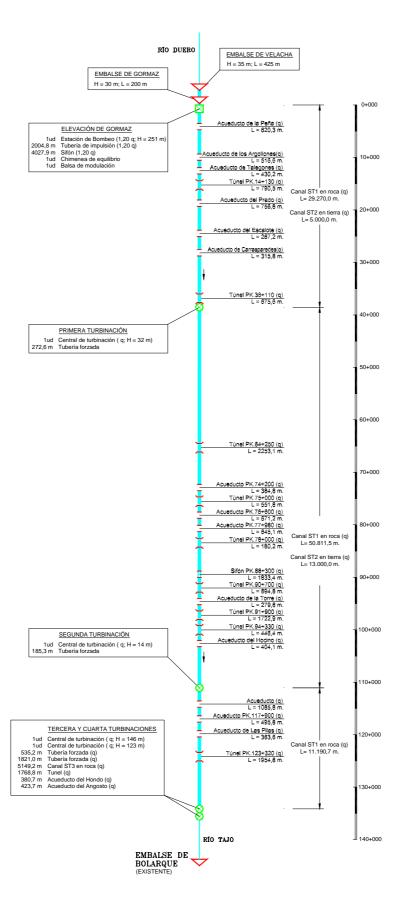


Figura 81. Conducción Alto Duero - Bolarque. Esquema en planta

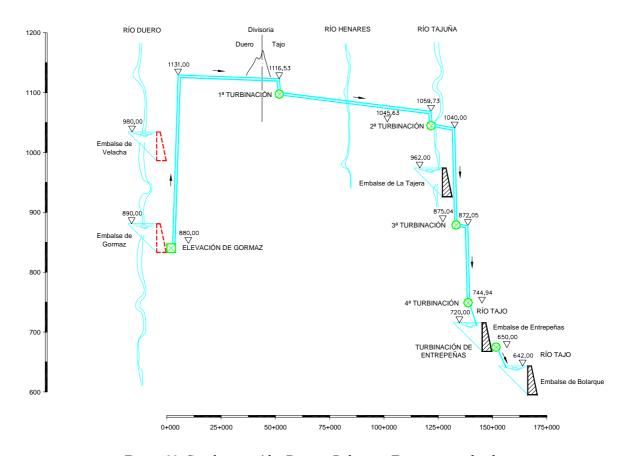


Figura 82. Conducción Alto Duero - Bolarque. Esquema en alzado

2.14. CONDUCCIÓN BAJO DUERO-BOLARQUE

La función de costes del tramo es la mostrada en la figura adjunta.

Tal y como se describe en el correspondiente Anejo, esta conducción es parcialmente alternativa a la anterior Alto Duero - Bolarque, coincidiendo aquel trazado aproximadamente desde el PK 20, con los últimos 150 kms de la conducción Bajo Duero - Bolarque, objeto del presente apartado, por lo que estos elementos parciales de ambos tramos, y en consecuencia sus valoraciones, resultan idénticos.

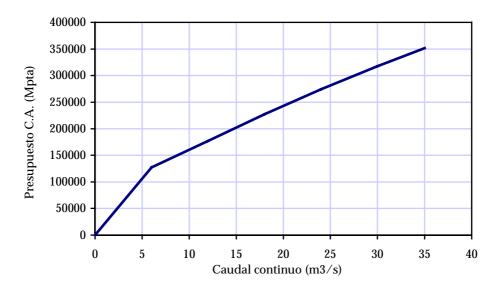


Figura 83. Conducción Bajo Duero-Bolarque. Función de coste

Respecto a los costes de circulación de este tramo, habría que considerar tanto el consumo energético debido a las siete elevaciones proyectadas (con un coeficiente energético de 2,3 kWh/m³ y un precio de la energía de 8,0 pts/kWh) como el beneficio obtenido en las cuatro turbinaciónes proyectadas en el sistema más la existente de la central de Entrepeñas en el río Tajo (las cuáles son las mismas que las de la anterior conducción "Alto Duero-Bolarque", alternativa a ésta, presentando un coeficiente energético conjunto de -0,7 a -0,8 kWh/m³, con una tarifa eléctrica variable en función de la potencia, y por tanto del caudal, entre 7,6 y 12,8 pts/kWh). Todo ello supone que el coeficiente energético de la conducción sería de 1,5 a 1,8 kWh/m³ con una tarifa equivalente variable entre 6,1 a 8,2 pts/kWh.

No obstante lo anterior, y al igual que ocurría en otras conducciones, esta variabilidad tiene poca influencia en los costes totales de flujo del tramo, que cuales oscilan entre $11 \ y \ 13 \ pts/m^3$, tal y como se detalla en las tablas adjuntas.

Q	h _{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
6,0	24	2	1100	3,2	2814	319,0	28,6	290,4	15,37	-0,7	12,8
12,0	24	2	1500	3,4	2814	319,0	21,9	297,1	31,45	-0,7	10,2
18,0	24	2	1900	3,2	2814	319,0	13,9	305,1	48,43	-0,7	7,3
24,0	24	2	2200	3,2	2814	319,0	11,3	307,7	65,13	-0,8	7,6
30,0	24	2	2500	3,1	2814	319,0	9,0	310,0	82,04	-0,8	7,6
35,0	24	2	2700	3,1	2814	319,0	8,1	310,9	95,98	-0,8	7,6

Tabla 77. Conducción Bajo Duero - Bolarque. Coeficientes energéticos en las turbinaciones

Q	h_{func}	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m^3)	(Pts/kWh)
6,0	20	2	1300	2,7	19459	670,0	116,8	786,8	65,3	2,5	8,0
12,0	20	2	1900	2,5	19459	670,0	61,7	731,7	121,5	2,3	8,0
18,0	20	2	2300	2,6	19459	670,0	50,1	720,1	179,3	2,3	8,0
24,0	20	2	2700	2,5	19459	670,0	37,9	707,9	235,1	2,3	8,0
30,0	20	2	3000	2,5	19459	670,0	33,8	703,8	292,1	2,3	8,0
35,0	20	2	3200	2,6	19459	670,0	32,6	702,6	340,2	2,3	8,0

Tabla 78. Conducción Bajo Duero - Bolarque. Coeficientes energéticos en las elevaciones

	Turbina	nciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	-0,7	12,8	2,5	8,0	0,0	1,8	6,1	11,0
10,0	-0,7	10,2	2,3	8,0	0,0	1,6	7,0	11,4
15,0	-0,7	7,3	2,3	8,0	0,0	1,6	8,3	13,0
20,0	-0,8	7,6	2,3	8,0	0,0	1,5	8,2	12,4
25,0	-0,8	7,6	2,3	8,0	0,0	1,5	8,2	12,3
35,0	-0,8	7,6	2,3	8,0	0,0	1,5	8,2	12,2

Tabla 79. Conducción Bajo Duero - Bolarque. Costes totales de circulación

Al igual que en la conducción anterior, en este caso, además, habría que considerar el beneficio energético producido por la utilización de la central existente de Entrepeñas en el río Tajo, la cual tiene un coeficiente energético de 0,12 kWh/ m³ que, con un precio de 6 pts/kWh supone un beneficio energético de 0,72 pts/m³.

											a (n	n ³ /s)					
						6		1	2	1		2	4	3	0	3	5
	Α	L	v	Н		Importe unitario	Importe parcial	Importe unitario	Importe parcial	Importe unitario	Importe parcial	Importe unitario	Importe parcial	Importe unitario	Importe parcial	Importe unitario	Importe parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)										
1 ELEVACION DE VILLALCAMPO							3.289		6.037		8.591		10.963		13.157		14.848
Ud Estación de bombeo (1,20 q) m Tubería de impulsión (1,20 q)				180	1 1137	1.992 0,179	1.992 204	3.674 0,313	3.674 356	5.226 0,449	5.226 511	6.655 0,588	6.655 669	7.964 0,730	7.964 830	8.963 0,850	8.963 966
m Sifón (1,20 q) Ud Chimenea de equilibrio					3876	0,226 34	876 34	0,432 34	1.674 34	0,623 34	2.415 34	0,800 34	3.101 34	0,963 34	3.733 34	1,088 34	4.217 34
Ud Balsa de modulación			14400 q		1	184	184	299	299	406	406	505	505	596	596	667	667
2 SEGUNDA ELEVACION							1.659		2.953		4.186		5.363		6.487		7.383
Ud Estación de bombeo (1,20 q) m Tubería de impulsión (1,20 q)				61	1 579	759 0,179	759 104	1.376 0,313	1.376 181	1.974 0,449	1.974 260	2.555 0,588	2.555 340	3.122 0.730	3.122 423	3.582 0,850	3.582 492
m Sifón (1,20 q)					1792	0,226	405	0,432	774	0,623	1.116	0,800	1.434	0,730	1.726	1,088	1.950
Ud Chimenea de equilibrio Ud Balsa de modulación			14400 q		1 2	24 184	24 367	24 299	24 597	24 406	24 811	24 505	24 1.009	24 596	24 1.193	24 667	24 1.335
3 TERCERA ELEVACIÓN							1.158		2.016		2.848		3.660	l	4.452		5.097
Ud Estación de bombeo (1,20 q)				46	1	575	575	1.040	1.040	1.495	1.495	1.940	1.940	2.377	2.377	2.735	2.735
m Tubería de impulsión (1,20 q) Ud Balsa de modulación			14400 q		1208 2	0,179 184	216 367	0,313 299	378 597	0,449 406	542 811	0,588 505	710 1.009	0,730 596	882 1.193	0,850 667	1.027 1.335
4 CUARTA ELEVACION							2.085		3.723		5.288		6.789		8.227		9.377
Ud Estación de bombeo (1,20 q)				89	1	1.057	1.057	1.940	1.940	2.787	2.787	3.601	3.601	4.384	4.384	5.014	5.014
m Tubería de impulsión (1,20 q) m Sifón (1,20 q)					1561 1533	0,179 0,226	279 346	0,313 0,432	489 662	0,449 0,623	701 955	0,588 0,800	918 1.226	0,730 0,963	1.140 1.476	0,850 1,088	1.327 1.668
Ud Chimenea de equilibrio					1	34	34	34	34	34	34	34	34	34	34	34	34
Ud Balsa de modulación 5 QUINTA ELEVACION			14400 q		2	184	367	299	597	406	811	505	1.009	596	1.193	667	1.335
Ud Estación de bombeo (1,20 q)				106	1	1.244	3.429 1.244	2.285	5.184 2.285	3.277	6.847 3.277	4.222	8.426 4.222	5.125	9.925 5.125	5.844	11.111 5.844
m Tubería de impulsión (1,20 q)				100	877	0,179	157	0,313	275	0,449	394	0,588	516	0,730	640	0,850	745
m Sifón (1,20 q) Ud Chimenea de equilibrio					2892 1	0,226	654 33	0,432 33	1.249 33	0,623 33	1.802	0,800 33	2.314	0,963 33	2.785 33	1,088	3.146 33
Ud Azud de modulación Ud Azud de modulación	23 15	275 450			1	770 572	770 572										
6 SEXTA ELEVACION	15	450			1	372		3/2		372		3/2		372		3/2	
Ud Estación de bombeo (1,20 q)				49	1	601	1.770 601	1.094	2.409 1.094	1.576	3.039 1.576	2.048	3.661 2.048	2.511	4.278 2.511	2.889	4.787 2.889
m Tubería de impulsión (1,20 q)					1085	0,179	194	0,313	340	0,449	487	0,588	638	0,730	792	0,850	922
Ud Azud de modulación Ud Azud de modulación	12 17	300 450			1	258 717	258 717										
7 <u>SÉPTIMA ELEVACIÓN</u>							2.565		4.661		6.635		8.493		10.239		11.609
Ud Estación de bombeo (1,20 q)				139	1	1.539	1.539	2.866	2.866	4.116	4.116	5.292	5.292	6.397	6.397	7.264	7.264
m Tubería de impulsión (1,20 q) m Sifón (1,20 q)					867 2052	0,179 0,226	155 464	0,313 0,432	271 886	0,449 0,623	389 1.278	0,588 0,800	510 1.642	0,730 0,963	633 1.976	0,850 1,088	737 2.233
Ud Chimenea de equilibrio Ud Balsa de modulación			14400 q		1	40 184	40 367	40 299	40 597	40 406	40 811	40 505	40 1.009	40 596	40 1.193	40 667	40 1.335
81* TURBINACION			14400 q		2	184	417	299	764	400	1.102	303	1.431	390	1.750	007	2.008
Ud Central de turbinación (q)				32	1	374	374	691	691	998	998	1.296	1.296	1.582	1.582	1.814	1.814
m Tuberia forzada (q)					273	0,157	43	0,268	73	0,381	104	0,495	135	0,612	167	0,710	194
9 <u>2ª TURBINACIÓN</u>							243		447		645		838		1.025		1.177
Ud Central de turbinación (q) m Tuberia forzada (q)				14	1 185	214 0,157	214 29	397 0,268	397 50	575 0,381	575 70	746 0,495	746 92	912 0,612	912 113	1.046 0,710	1.046 131
10 3ª Y 4ª TURBINACIONES							3.720		6.114		10.423		13.487		16.017		18.115
Ud Central de turbinación 3 (q)				146	1	1.076	1.076	1.967	1.967	2.828	2.828	3.661	3.661	4.464	4.464	5.111	5.111
m Tuberia forzada 3 (q) Ud Central de turbinación 4 (q)				127	535 1	0,157 986	84 986	0,268 1.817	143 1.817	0,381 2.621	204 2.621	0,495 3.398	265 3.398	0,612 4.149	327 4.149	0,710 4.754	380 4.754
m Tuberia forzada 3 (q)					1821	0,157	286	0,268	488	0,381	694 3.089	0,495	901	0,612	1.114	0,710	1.293
m Sección tipo 3 en roca (q) m Túnel (q)					5149 1769	0,137 0,329	705 582	0,174 0,454	896 803	0,600 0,558	987	0,800 0,646	4.119 1.143	0,910 0,722	4.686 1.277	1,010 0,778	5.200 1.376
m Acueducto Hondo (q) m Acueducto Angosto (q)					381 424	0,183 0.183	70 78	0,280 0,280	112 168	0,367 0,367	128 128	0,446 0,446	156 156	0,518 0,518	181 181	0,573 0,573	201 201
11 <u>CANAL</u>					433.913		44.268	.,	53.947	.,	63.975		74.698	l	84.944	-,	92.975
m ST 1 (q); Elevación 1ª a 2ª					26831	0,137	3.676	0,174	4.669	0,216	5.795	0,261	7.003	0,307	8.237	0,343	9.203
m ST 1 (q); Elevación 7 ^a a Turbinac. 1 ^a m ST 1 (q); Turbinación 1 ^a a 2 ^a					41762 50558	0,137 0,137	5.721 6.926	0,174 0,174	7.267 8.797	0,216 0,216	9.021 10.921	0,261 0,261	10.900 13.196	0,307 0,307	12.821 15.521	0,343 0,343	14.324 17.341
m ST 1 (q); Turbinación 2ª a 3ª					11191 108335	0,137 0,087	1.533	0,174	1.947	0,216	2.417	0,261	2.921	0,307	3.436	0,343	3.839
m ST 2 (q); Elevación 2ª a 3ª m ST 2 (q); Elevación 3ª a 4ª					36841	0,087	9.425 3.205	0,103 0,103	11.159 3.795	0,118 0,118	12.784 4.347	0,134 0,134	14.517 4.937	0,148 0,148	16.034 5.452	0,159 0,159	17.225 5.858
m ST 2 (q); Elevación 4ª a 5ª m ST 2 (q); Elevación 5ª a 6ª					25964 46553	0,087 0,087	2.259 4.050	0,103 0,103	2.674 4.795	0,118 0,118	3.064 5.493	0,134 0,134	3.479 6.238	0,148 0,148	3.843 6.890	0,159 0,159	4.128 7.402
m ST 2 (q); Elevación 6ª a 7ª	!				50695	0,087	4.410	0,103	5.222	0,118	5.982	0,134	6.793	0,148	7.503	0,159	8.061
m ST 2 (q); Elevación 7 ^a a Turbinac. 1 ^a m ST 2 (q); Turbinación 1 ^a a 2 ^a					21929 13254	0,087 0,087	1.908 1.153	0,103 0,103	2.259 1.365	0,118 0,118	2.588 1.564	0,134 0,134	2.938 1.776	0,148 0,148	3.245 1.962	0,159 0,159	3.487 2.107
12 TUNELES					40.915	-,007	13.461	5,100	18.575	-,113	22.831	3,101	26.431	l	29.541	3,100	31.832
m Túnel (q); P.K.18+200					1333	0,329	439	0,454	605	0,558	744	0,646	861	0,722	962	0,778	1.037
m Túnel (q); P.K.27+150 m Túnel (q); P.K.33+500					2164 396	0,329 0,329	712 130	0,454 0,454	982 180	0,558 0,558	1.208 221	0,646 0,646	1.398 256	0,722 0,722	1.562 286	0,778 0,778	1.684 308
m Túnel (q); P.K.34+600					276	0,329	91	0,454	125	0,558	154	0,646	178	0,722	199	0,778	215
m Túnel (q); P.K.36+900 m Túnel (q); P.K.42+600					1290 1785	0,329 0,329	424 587	0,454 0,454	586 810	0,558 0,558	720 996	0,646 0,646	833 1.153	0,722 0,722	931 1.289	0,778 0,778	1.004 1.389
m Túnel (q); P.K.47+500	l	l		l	1728	0,329	569		785		964		1.116	0,722	1.248	0,778	1.344

Tabla 80. Valoración de la conducción Bajo Duero – Bolarque

													•					
							6	. 1	1:	9	1:	q (n	1 ³ /s)	1	3	0	3	
							Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
		A	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
		(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
m m	Túnel (q); P.K.72+500 Túnel (q); P.K.77+300					1068 338	0,329 0,329	351 111	0,454 0,454	485 153	0,558 0,558	596 189	0,646 0,646	690 218	0,722 0,722	771 244	0,778 0,778	831 263
m	Túnel (q); P.K.77+300 Túnel (q); P.K.78+500					1196	0,329	393	0,454	543	0,558	667	0,646	773	0,722	864	0,778	930
m	Túnel (q); P.K.94+500					472	0,329	155	0,454	214	0,558	263	0,646	305	0,722	341	0,778	367
m	Túnel (q); P.K.118+500					593 1395	0,329 0,329	195 459	0,454 0,454	269 633	0,558 0,558	331 778	0,646 0,646	383 901	0,722 0,722	428 1.007	0,778 0,778	461 1.085
m m	Túnel (q); P.K.194+100 Túnel (q); P.K.265+950					981	0,329	323	0,454	445	0,558	547	0,646	634	0,722	708	0,778	763
m	Túnel (q); P.K.275+100					2115	0,329	696	0,454	960	0,558	1.180	0,646	1.366	0,722	1.527	0,778	1.645
m	Túnel (q); P.K.296+900					366	0,329	120	0,454	166	0,558	204	0,646	236	0,722	264	0,778	285
m m	Túnel (q); P.K.310+800 Túnel (q); P.K.350+000					791 2021	0,329	260 665	0,454 0,454	359 918	0,558 0,558	441 1.128	0,646 0,646	511 1.306	0,722 0,722	571 1.459	0,778 0,778	615 1.572
m	Túnel (q); P.K.354+700					875	0,329	288	0,454	397	0,558	488	0,646	565	0,722	632	0,778	681
m	Túnel (q); P.K.356+100					291	0,329	96	0,454	132	0,558	162	0,646	188	0,722	210	0,778	226
m m	Túnel (q); P.K.356+700 Túnel (q); P.K.379+510					1200 2300	0,329 0,329	395 757	0,454 0,454	545 1.044	0,558 0,558	670 1.283	0,646 0,646	775 1.486	0,722 0,722	866 1.661	0,778 0,778	934 1.789
m	Túnel (q); P.K.387+320					503	0,329	165	0,454	228	0,558	281	0,646	325	0,722	363	0,778	391
m	Túnel (q); P.K.413+130					790	0,329	260	0,454	359	0,558	441	0,646	510	0,722	570	0,778	615
m m	Túnel (q); P.K.463+250 Túnel (q); P.K.435+610					2253 676	0,329 0,329	741 222	0,454 0,454	1.023	0,558 0,558	1.257 377	0,646 0.646	1.455 437	0,722 0,722	1.627 488	0,778 0,778	1.753 526
m	Túnel (q); P.K.473+610 Túnel (q); P.K.474+000					552	0,329	182	0,454	251	0,558	308	0,646	357	0,722	399	0,778	429
m	Túnel (q); P.K.477+750					180	0,329	59	0,454	82	0,558	100	0,646	116	0,722	130	0,778	140
m	Túnel (q); P.K.489+700					695	0,329	229	0,454	316	0,558	388	0,646	449	0,722	502	0,778	541
m m	Túnel (q); P.K.490+900 Túnel (q); P.K.493+300					1723 446	0,329	567 147	0,454 0,454	782 202	0,558 0,558	961 249	0,646 0.646	1.113	0,722 0,722	1.244 322	0,778 0,778	1.340 347
m	Túnel (q); P.K.522+350					1955	0,329	643	0,454	888	0,558	1.091	0,646	1.263	0,722	1.412	0,778	1.521
13 A	CUEDUCTOS					26.190		4.793		7.896		10.349		12.577		14.608		16.159
m	Acueducto Valle Visarra (q)					1068	0.183	195	0.280	308	0.367	404	0.446	491	0.518	570	0,573	630
m	Acueducto Sogo Ancho (q)					710	0,183	130	0,280	210	0,367	275	0,446	335	0,518	389	0,573	430
m	Acueducto La Ribera (q)					184	0,183	34	0,280	42	0,367	55	0,446	67	0,518	78	0,573	86
m	Acueducto Valparaiso (q)					754	0,183	138	0,280	224	0,367	294	0,446	357	0,518	414	0,573	458
m m	Acueducto Cruz de la Ventura (q) Acueducto Molino Gallego (q)					500 465	0,183 0.183	92 85	0,280 0.280	168 126	0,367 0,367	220 165	0,446 0,446	268 201	0,518 0,518	311 233	0,573 0,573	344 258
m	Acueducto San Pedro (q)					460	0,183	84	0,280	196	0,367	257	0,446	312	0,518	363	0,573	401
m	Acueducto Guareña (q)					823	0,183	151	0,280	294	0,367	385	0,446	468	0,518	544	0,573	602
m	Acueducto Mazores (q)					646 831	0,183	118	0,280	210 280	0,367	275	0,446	335	0,518	389	0,573	430
m m	Acueducto La Tajuña (q) Acueducto Adaja (q)					470	0,183 0,183	152 86	0,280 0,280	140	0,367 0,367	367 184	0,446 0,446	446 223	0,518 0,518	518 259	0,573 0,573	573 287
m	Acueducto Voltoya (q)					711	0,183	130	0,280	224	0,367	294	0,446	357	0,518	414	0,573	458
m	Acueducto Eresma (q)					206	0,183	38	0,280	70	0,367	92	0,446	112	0,518	130	0,573	143
m m	Acueducto Las Mulas (q) Acueducto La Matilla (q)					575 440	0,183 0,183	105 81	0,280 0,280	182 112	0,367 0,367	239 147	0,446 0,446	290 178	0,518 0,518	337 207	0,573 0,573	372 229
m	Acueducto La Matina (q) Acueducto Cega (q)					604	0,183	111	0,280	196	0,367	257	0,446	312	0,518	363	0,573	401
m	Acueducto San Juan (q)					832	0,183	152	0,280	252	0,367	330	0,446	401	0,518	466	0,573	516
m	Acueducto Castilla (q)					690	0,183	126	0,280	252	0,367	330	0,446	401	0,518	466	0,573	516
m	Acueducto Duraton (q) Acueducto Corral (q)					1778 578	0,183 0,183	325 106	0,280 0,280	532 168	0,367 0,367	697 220	0,446 0,446	847 268	0,518 0,518	984 311	0,573 0,573	1.089 344
m m	Acueducto Corrar (q) Acueducto Llano (q)					457	0,183	84	0,280	168	0,367	220	0,446	268	0,518	311	0,573	344
m	Acueducto Riaza (q)					740	0,183	135	0,280	196	0,367	257	0,446	312	0,518	363	0,573	401
m	Acueducto PK 345 (q)					1860	0,183	340	0,280	196	0,367	257	0,446	312	0,518	363	0,573	401
m m	Acueducto Pedro (q) Acueducto Tielmes (q)					197 473	0,183 0,183	36 87	0,280 0,280	70 109	0,367 0,367	92 143	0,446 0,446	112 174	0,518 0,518	130 202	0,573 0,573	143 223
m	Acueducto PK 383 (q)					450	0,183	82	0,280	109	0,367	143	0,446	174	0,518	202	0,573	223
m	Acueducto Madrueduano (q)					947	0,183	173	0,280	260	0,367	341	0,446	415	0,518	482	0,573	533
m	Acueducto Las Praderas (q)				l	503 620	0,183	92 113	0,280 0,280	157 157	0,367 0,367	206 206	0,446	250	0,518	290	0,573	321 321
m m	Acueducto La Peña (q) Acueducto Los Argollones (q)				l	517	0,183 0,183	95	0,280	157	0,367	206	0,446 0,446	250 250	0,518 0,518	290 290	0,573 0,573	321
m	Acueducto Talegones (q)				l	430	0,183	79	0,280	101	0,367	132	0,446	161	0,518	186	0,573	206
m	Acueducto Parado (q)				l	757	0,183	139	0,280	224	0,367	294	0,446	357	0,518	414	0,573	458
m m	Acueducto Escalote (q) Acueducto Carraparedes (q)				l	267 316	0,183 0,183	49 58	0,280 0,280	84 84	0,367 0,367	110 110	0,446 0,446	134 134	0,518 0,518	155 155	0,573 0,573	172 172
m	Acueducto Carraparedes (q) Acueducto P.K. 473,20 (q)					385	0,183	70	0,280	112	0,367	147	0,446	178	0,518	207	0,573	229
m	Acueducto P.K. 475,60 (q)				l	671	0,183	123	0,280	196	0,367	257	0,446	312	0,518	363	0,573	401
m	Acueducto P.K. 476 (q)				l	645	0,183	118	0,280	196 98	0,367	257	0,446	312	0,518	363	0,573	401
m m	Acueducto La Torre (q) Acueducto Hocino (q)				l	280 404	0,183 0,183	51 74	0,280 0,280	98 210	0,367 0,367	128 275	0,446 0,446	156 335	0,518 0,518	181 389	0,573 0,573	201 430
m	Acueducto PK. 514 (q)				l	1086	0,183	199	0,280	364	0,367	477	0,446	580	0,518	673	0,573	745
m	Acueducto PK. 516 (q)				l	496	0,183	91	0,280	364	0,367	477	0,446	580	0,518	673	0,573	745
m	Acueducto Las Pilas (q)				l	364	0,183	67	0,280	98	0,367	128	0,446	156	0,518	181	0,573	201
14 <u>SI</u>	FONES				l	7.480		1.421		2.730		3.957		5.116		6.193		7.039
	Sifón (q); P.K. 93+700				l	848	0,190	161	0,365	310	0,529	449	0,684	580		702	0,941	798
	Sifón (q); P.K. 148+000 Sifón (q); P.K. 487+300				l	4799 1833	0,190 0,190	912 348	0,365 0,365	1.752 669	0,529 0,529	2.539 970	0,684 0,684	3.283 1.254	0,828 0,828	3.974 1.518	0,941 0,941	4.516 1.725
PRES	UPUESTO DE EJECUCION MATERIAI	(M P	ts.)			1033	0,190	84.035	0,303	117.010	0,329	150.071	0,084	181.096	0,848	209.817	0,941	232.338
	OS GENERALES Y BENEFICIO INDUS	-		6) (M P	ts.):			19.328		26.912		34.516		41.652		48.258		53.438
				L (M P				103.363		143.922		184.587		222.748		258.074		285.776
			I.V.A.	(16%) (M Pts	.):		16.538		23.028		29.534		35.640	1	41.292		45.724
	UPUESTO DE EJECUCION POR CONT							119.901		166.950		214.121		258.388		299.366		331.500
PRES	UPUESTO CONOCIMIENTO DE LA A	DMIN	NISTRA	ACIÓN	(M P	s.):		127.155		177.050	J	227.075		274.020	1	317.478		351.556

Tabla 81. Valoración de la conducción Bajo Duero – Bolarque (continuación)

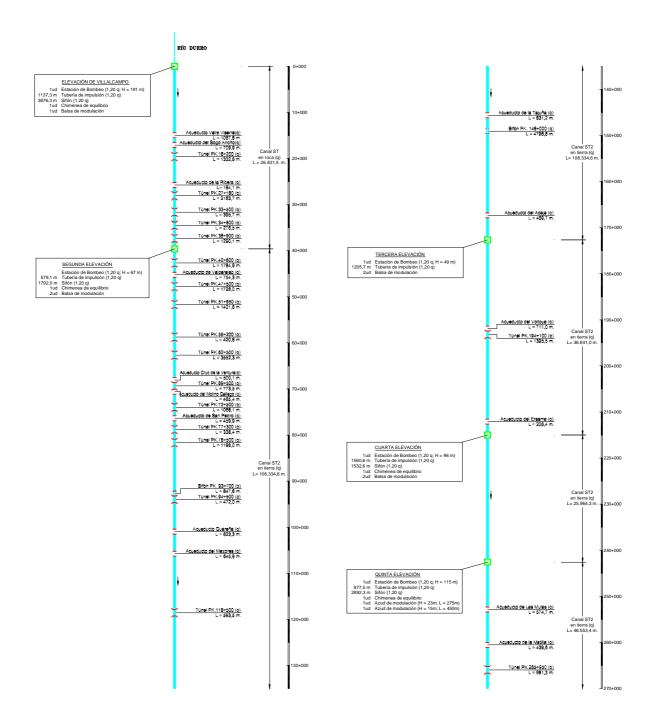


Figura 84. Conducción Bajo Duero - Bolarque. Esquema en planta

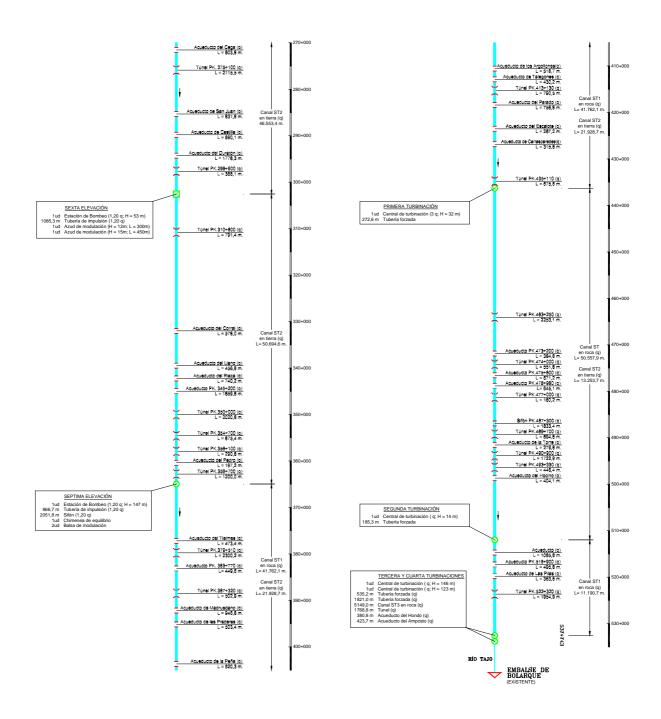


Figura 85. Conducción Bajo Duero - Bolarque. Esquema en planta (continuación)

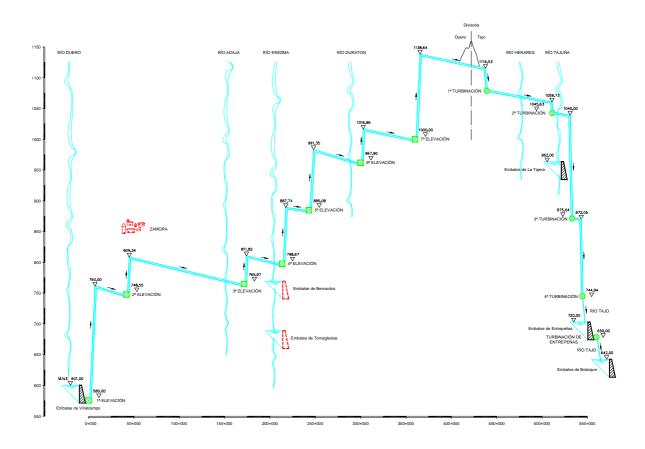


Figura 86. Conducción Bajo Duero - Bolarque. Esquema en alzado

2.15. CONDUCCIÓN JARAMA-BOLARQUE

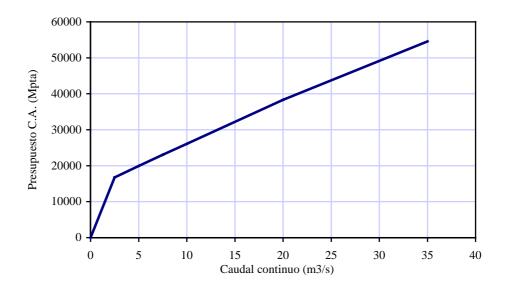


Figura 87. Conducción Jarama-Bolarque. Función de coste

Respecto a sus costes de circulación, habría que considerar únicamente el consumo energético debido a las elevaciones del Jarama y de Chirra. El coeficiente energético resultante oscila entre 0,6 y 0,7 kWh/m³ y el precio de la energía entre 8 y 9 pts/kWh, lo que supone unos costes totales de flujo aproximadamente, entre 5 y 6 pts/m³. Las tablas adjuntas muestran el detalle de tales estimaciones.

-	Q	h _{func}	Nº	D	V	L	H _{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
	(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
•	2,5	20	1	1200	2,7	3556	194,0	22,7	216,7	7,5	0,7	9,0
	5,0	20	1	1700	2,6	3556	194,0	14,2	208,2	14,4	0,7	9,0
	7,5	20	1	2100	2,6	3556	194,0	10,3	204,3	21,2	0,7	8,0
	10,0	20	1	2400	2,7	3556	194,0	9,0	203,0	28,1	0,7	8,0
	20,0	20	1	3400	2,6	3556	194,0	5,6	199,6	55,2	0,6	8,0
	35,0	20	1	4600	2,5	3556	194,0	3,4	197,4	95,6	0,6	8,0

Tabla 82. Conducción Jarama - Bolarque. Coeficientes energéticos en las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
2,5	0,0	0,0	0,7	9,0	0,0	0,7	9,0	6,2
5,0	0,0	0,0	0,7	9,0	0,0	0,7	9,0	6,0
7,5	0,0	0,0	0,7	8,0	0,0	0,7	8,0	5,2
10,0	0,0	0,0	0,7	8,0	0,0	0,7	8,0	5,2
20,0	0,0	0,0	0,6	8,0	0,0	0,6	8,0	5,1
35,0	0,0	0,0	0,6	8,0	0,0	0,6	8,0	5,1

Tabla 83. Conducción Jarama - Bolarque. Costes totales de circulación

												3					
						2.	-	5		7,		n ³ /s)		20			5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACIÓN DESDE EL JARAMA							493		<u>794</u>		1.091		1.384		2.530		4.177
Ud Estación de bombeo (1,20 q)				47	1	292	292	494	494	694	694	891	891	1.661	1.661	2.772	2.772
m Tubería de impulsión (1,20 q)					868	0,102	89	0,157	136	0,212	184	0,268	233	0,495	430	0,850	738
Ud Balsa de modulación			14400.q		1	113	113	164	164	213	213	261	261	439	439	667	667
2 ELEVACION DE CHIRRA							1.169		1.985		2.780		3.561		6.533		10.571
Ud Estación de bombeo (1,20 q)				147	1	751	751	1.368	1.368	1.966	1.966	2.548	2.548	4.732	4.732	7.589	7.589
m Tubería de impulsión (1,20 q)					2687	0,102	274	0,157	422	0,212	570	0,268	720	0,495	1.330	0,850	2.284
Ud Chimenea de equilibrio					1	31,4	31	31,4	31	31,4	31	31,4	31	31,4	31	31,4	31
Ud Balsa de modulación			14400.q		1	113	113	164	164	213	213	261	261	439	439	667	667
3 AZUD SOBRE EL RIO JARAMA							198		198		198		198		198		198
Ud Azud de toma	13	200			1	198	198	198	198	198	198	198	198	198	198	198	198
4 CANAL					107.688		8.400		9.153		9.800		10.446		13.353		17.122
m Sección en tierra (q)					107688	0,078	8.400	0,085	9.153	0,091	9.800	0,097	10.446	0,124	13.353	0,159	17.122
iii Seccion en derra (d)					107088	0,076	0.400	0,003	3.133	0,031	3.000	0,037	10.440	0,124	13.333	0,133	17.122
5 <u>TÜNELES</u>					913		225		280		331		379		538		<u>710</u>
m Túnel PK 116 (q)					913	0,246	225	0,307	280	0,363	331	0,415	379	0,589	538	0,778	710
6 ACUEDUCTOS					3.188		392		529		663		<u>794</u>		1.256		1.827
m Acueducto de Valdepinar (q)					170	0,123	21	0,166	28	0,208	35	0,249	42	0,394	67	0,573	97
m Acueducto de Balserón (q)					177	0,123	22	0,166	29	0,208	37	0,249	44	0,394	70	0,573	101
m Acueducto de Brea (q)					892	0,123	110	0,166	148	0,208	186	0,249	222	0,394	351	0,573	511
m Acueducto de La Vega (q)					779	0,123	96	0,166	129	0,208	162	0,249	194	0,394	307	0,573	446
m Acueducto de Barbales (q)					468	0,123	58	0,166	78	0,208	97	0,249	117	0,394	184	0,573	268
m Acueducto del Val (q)					217	0,123	27	0,166	36	0,208	45	0,249	54	0,394	85	0,573	124
m Acueducto del Arles (q)					485	0,123	60	0,166	81	0,208	101	0,249	121	0,394	191	0,573	278
7 SIFONES					2.017		169		252		368		482		909		1.468
m Sifón (q)					190	0,084	16	0,160	30	0,235	45	0,308	59	0,582	111	0,941	179
m Sifón (q)					459	0,084	39	0,005	2	0,005	2	0,005	2	0,005	2	0,005	2
m Sifón (q)					529	0,084	44	0,160	85	0,235	124	0,308	163	0,582	308	0,941	498
m Sifón (q)					839	0,084	70	0,160	134	0,235	197	0,308	258	0,582	488	0,941	789
PRESUPUESTO DE EJECUCION MATERIAI	(M)	Dto)					11.046		13.191		15.231		17.244		25.317		36.074
GASTOS GENERALES Y BENEFICIO INDU	•	,	%) (M Pts)·			2.541		3.034		3,503		3.966		5.823		8.297
d. B. Too dir. Villa in in a factor in the f		-	L (M Pts.)				13.586		16.225		18.735		21.210		31.140		44.371
		I.V.A.	(16%) (M	Pts.):			2.174		2.596		2.998		3.394		4.982		7.099
PRESUPUESTO DE EJECUCION POR CONT	RAT						15.760		18.821		21.732		24.604		36.122		51.470
PRESUPUESTO CONOCIMIENTO DE LA A	DMI	NISTR	ACIÓN (!	M Pts.):			16.714		19.960		23.047		26.092		38.308		54.584

Tabla 84. Valoración de la conducción Jarama - Bolarque

q Caudal continuo

A Altura de las presas
 L Longitud de coronación de las presas
 V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

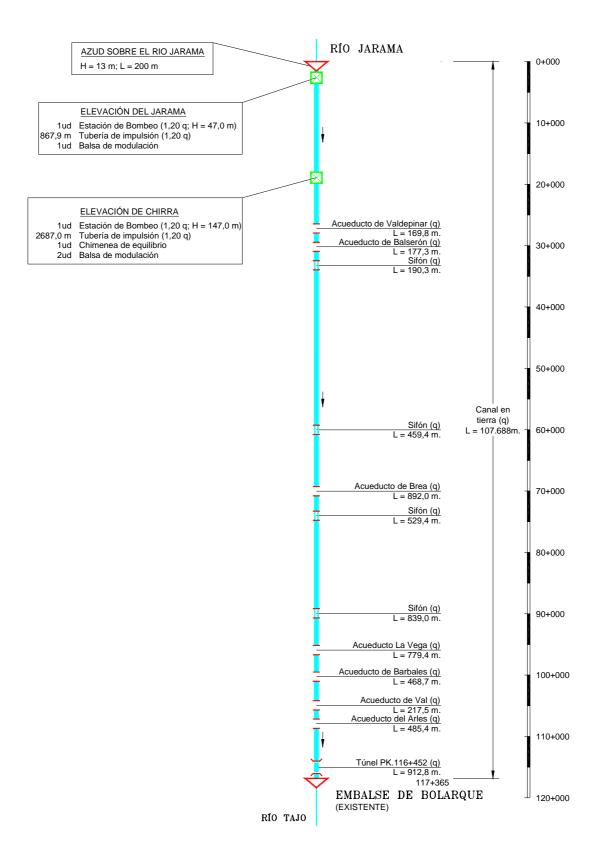


Figura 88. Conducción Jarama - Bolarque. Esquema en planta

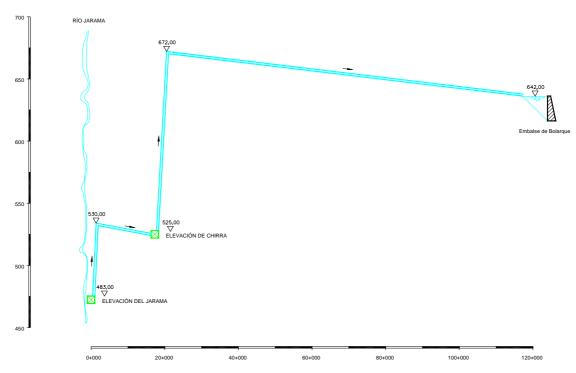


Figura 89. Conducción Jarama - Bolarque. Esquema en alzado

2.16. CONDUCCIÓN TIÉTAR-ALDEANUEVA

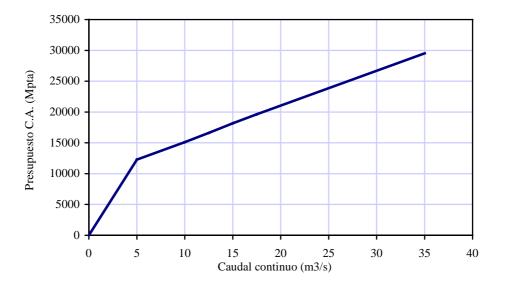


Figura 90. Conducción Tiétar-Aldeanueva. Función de coste

Respecto a sus costes de circulación, habría que considerar únicamente el consumo energético debido a la elevación de Navalcán. El coeficiente energético resultante es de 0,12 kWh/m³ y el precio de la energía de 9 pts/kWh, lo que supone unos costes totales de flujo de aproximadamente 1,1 pts/m³, tal y como se muestra en las tablas adjuntas.

4 4 4											
Q	h _{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
5,0	20	2	1200	2,7	589	36.0	3.8	39.8	2.8	0,13	9.0
10,0	20	2	1700	2,6	589	36.0	2.3	38.3	5.3	0,12	9.0
12,5	20	2	1900	2,6	589	36.0	2.0	38.0	6.6	0,12	9.0
15,0	20	2	2100	2,6	589	36.0	1.7	37.7	7.8	0,12	9.0
17,5	20	2	2300	2,5	589	36.0	1.4	37.4	9.1	0,12	9.0
35,0	20	2	3200	2,6	589	36.0	1.0	37.0	17.9	0,12	8.0

Tabla 85. Conducción Tiétar-Aldeanueva. Coeficientes energéticos en las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	0,0	0,0	0,13	9.0	0,0	0,13	9.0	1,1
10,0	0,0	0,0	0,12	9.0	0,0	0,12	9.0	1,1
12,5	0,0	0,0	0,12	9.0	0,0	0,12	9.0	1,1
15,0	0,0	0,0	0,12	9.0	0,0	0,12	9.0	1,1
17,5	0,0	0,0	0,12	9.0	0,0	0,12	9.0	1,1
35,0	0,0	0,0	0,12	8.0	0,0	0,12	8.0	1,1

Tabla 86. Conducción Tiétar-Aldeanueva. Costes totales de circulación

											q (m ³ /s)						
						5		1		12		15		17		3	
			**	**		•	Importe	•	Importe	Importe	•	•	Importe		Importe	Importe	•
	A (m)	L (m)	V (m3)	H (m)	Madialán	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M. Bto)	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)
1 ELEVACIÓN DEL NAVALCÁN Ud Estación de bombeo (1,20 q) m Tubería de impulsión (1,20 q) Ud Balsa de modulación	(II)	(11)	14400.q	36	1 589 2	404 0.157 164	824 404 92 327	711 0.268 261	1.392 711 158 523	863 0.324 308	1.669 863 191 616	1.013 0.381 353	1.944 1.013 224 706	1.162 0.438 397	2.214 1.162 258 794	2.179 0.850 667	4.015 2.179 501 1.335
2 AZUD DE DERIVACIÓN Ud Azud de toma	10	50			1	32	32 32	32	32 32	32	32 32	32	32 32	32	32 32	32	32 32
3 <u>CANAL</u> m Sección en tierra (q) m Sección en roca (q)					72199 58855 13344	0.085 0.132	6.764 5.003 1.761	0.097 0.161	7.857 5.709 2.148	0.104 0.177	8.483 6.121 2.362	0.111 0.195	9.135 6.533 2.602	0.117 0.213	9.728 6.886 2.842		13.935 9.358 4.577
4 <u>TÚNELES</u> m Falso túnel (q) m Falso túnel (q)					1010 605 405	0.307 0.307	186 186 124	0.415 0.415	251 251 168	0.463 0.463	280 280 188	0.508 0.508	307 307 206	0.550 0.550	333 333 223		471 471 315
5 ACUEDUCTOS m Acueducto del río Guadyerbas (q) m Acueducto del río Tajo (q)					1832 1387 445	0.166 0.166	304 230 74	0.249 0.249	456 345 111	0.287 0.287	526 398 128	0.325 0.325	<u>595</u> 451 145	0.360 0.360	660 499 160	0.573	1.050 795 255
PRESUPUESTO DE EJECUCION MAT	ERI/	L (M	Pts.)				8.110		9.988		10.990		12.013		12.966		19.502
GASTOS GENERALES Y BENEFICIO	IND	USTR	IAL (23%	6) (M l	Pts.):		1.865		2.297		2.528		2.763		2.982		4.485
TOTAL (m Pts.)							9.975		12.286		13.518		14.776		15.949		23.987
I.V.A. (16%) (M Pts.):							1.596		1.966		2.163		2.364		2.552		3.838
PRESUPUESTO DE EJECUCION POR CONTRATA (M Pts.):							11.571		14.251		15.681		17.140		18.501		27.825
PRESUPUESTO CONOCIMIENTO DE LA ADMINISTRACIÓN (M Pts.							12.272		15.113		16.629		18.177		19.620		29.509

Tabla 87. Valoración de la conducción Tiétar-Aldeanueva

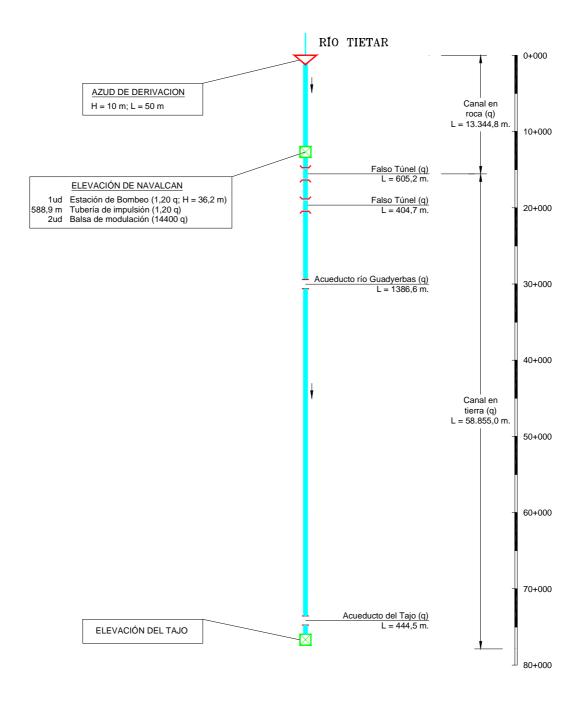


Figura 91. Conducción Tiétar-Aldeanueva. Esquema en planta

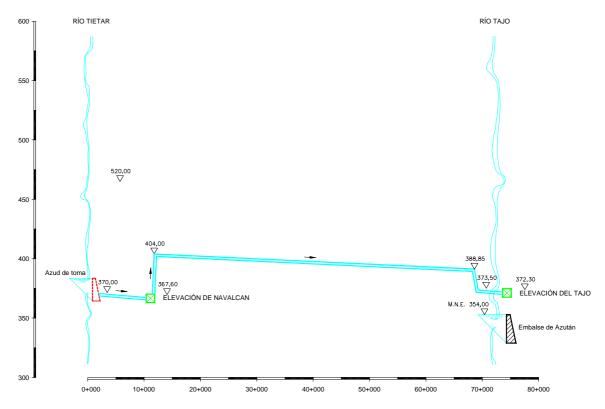


Figura 92. Conducción Tiétar-Aldeanueva. Esquema en alzado

2.17. CONDUCCIÓN AZUTÁN-ALDEANUEVA

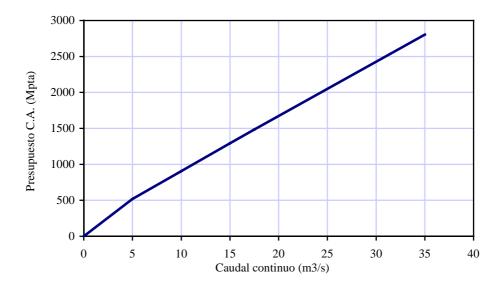


Figura 93. Conducción Azután-Aldeanueva. Función de coste

Respecto a sus costes de circulación, habría que considerar únicamente el consumo energético debido a la elevación de Azután. El coeficiente energético resultante es de 0,095 kWh/m³ y el precio de la energía de 8 pts/kWh, lo que supone unos costes totales de flujo de 0,8 pts/m³, tal y como se muestra en las tablas adjuntas.

\mathbf{h}_{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
20	1	1700	2.6	100	29.0	0.4	29.4	2.0	.094	9.0
20	2	1700	2.6	100	29.0	0.4	29.4	4.1	.094	9.0
20	2	1900	2.6	100	29.0	0.3	29.3	5.1	.094	9.0
20	2	2100	2.6	100	29.0	0.3	29.3	6.1	.094	9.0
20	2	2300	2.5	100	29.0	0.2	29.2	7.1	.094	9.0
20	2	3200	2.6	100	29.0	0.2	29.2	14.1	.093	9.0
	(nº) 20 20 20 20 20 20 20	(n°) tubos 20 1 20 2 20 2 20 2 20 2 20 2	(n°) tubos (mm) 20 1 1700 20 2 1700 20 2 1900 20 2 2100 20 2 2300	(n°) tubos (mm) (m/s) 20 1 1700 2.6 20 2 1700 2.6 20 2 1900 2.6 20 2 2100 2.6 20 2 2300 2.5	(n°) tubos (mm) (m/s) (m) 20 1 1700 2.6 100 20 2 1700 2.6 100 20 2 1900 2.6 100 20 2 2100 2.6 100 20 2 2300 2.5 100	(n°) tubos (mm) (m/s) (m) (m) 20 1 1700 2.6 100 29.0 20 2 1700 2.6 100 29.0 20 2 1900 2.6 100 29.0 20 2 2100 2.6 100 29.0 20 2 2300 2.5 100 29.0	(n°) tubos (mm) (m/s) (m) (m) (m) 20 1 1700 2.6 100 29.0 0.4 20 2 1700 2.6 100 29.0 0.4 20 2 1900 2.6 100 29.0 0.3 20 2 2100 2.6 100 29.0 0.3 20 2 2300 2.5 100 29.0 0.2	(n°) tubos (mm) (m/s) (m) (m) (m) (m) 20 1 1700 2.6 100 29.0 0.4 29.4 20 2 1700 2.6 100 29.0 0.4 29.4 20 2 1900 2.6 100 29.0 0.3 29.3 20 2 2100 2.6 100 29.0 0.3 29.3 20 2 2300 2.5 100 29.0 0.2 29.2	(n°) tubos (mm) (m/s) (m) (m) (m) (m) (m) (MW) 20 1 1700 2.6 100 29.0 0.4 29.4 2.0 20 2 1700 2.6 100 29.0 0.4 29.4 4.1 20 2 1900 2.6 100 29.0 0.3 29.3 5.1 20 2 2100 2.6 100 29.0 0.3 29.3 6.1 20 2 2300 2.5 100 29.0 0.2 29.2 7.1	(n°) tubos (mm) (m/s) (m) (m) (m) (m) (MW) (kWh/m³) 20 1 1700 2.6 100 29.0 0.4 29.4 2.0 .094 20 2 1700 2.6 100 29.0 0.4 29.4 4.1 .094 20 2 1900 2.6 100 29.0 0.3 29.3 5.1 .094 20 2 2100 2.6 100 29.0 0.3 29.3 6.1 .094 20 2 2300 2.5 100 29.0 0.2 29.2 7.1 .094

Tabla 88. Conducción Azután-Aldeanueva. Coeficientes energéticos en las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	Total costes		
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación	
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	
5,0	0,0	0,0	0.09	9.0	0.0	0.1	9.0	0.8	
10,0	0,0	0,0	0.09	9.0	0.0	0.1	9.0	0.8	
12,5	0,0	0,0	0.09	9.0	0.0	0.1	9.0	0.8	
15,0	0,0	0,0	0.09	9.0	0.0	0.1	9.0	0.8	
17,5	0,0	0,0	0.09	9.0	0.0	0.1	9.0	0.8	
35,0	0,0	0,0	0.09	9.0	0.0	0.1	9.0	0.8	

Tabla 89. Conducción Azután-Aldeanueva. Costes totales de circulación

						q (m³/s)											
						5	i	10		12.5		15.0		17.5		3	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	V	H		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACIÓN DEL AZUTÁN							342		599		727		854		981		1.853
Ud Estación de bombeo (1,20 q)				29	1	326	326	572	572	694	694	816	816	937	937	1.768	1.768
m Tubería de impulsión (1,20 q)					100	0.157	16	0.268	27	0.324	32	0.381	38	0.438	44	0.850	85
PRESUPUESTO DE EJECUCION MAT	ERIA	AL (M	Pts.)				342		599		727		854		981		1.853
GASTOS GENERALES Y BENEFICIO	IND	USTR	IAL (23%	6) (M	Pts.):		79		138		167		196		226		426
		TOT	AL (m Pt	s.)			420		737		894		1.050		1.206		2.280
		67		118		143		168		193		365					
PRESUPUESTO DE EJECUCION POR CONTRATA (M Pts.):							487		854		1.037		1.218		1.399		2.644
PRESUPUESTO CONOCIMIENTO DE LA ADMINISTRACIÓN (M Pts.):							517		906		1.099		1.292		1.484		2.804

Tabla 90. Valoración de la conducción Azután-Aldeanueva

q Caudal contínuo de trasvase A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

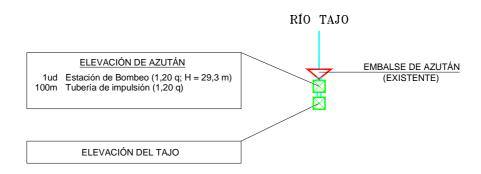


Figura 94. Conducción Azután-Aldeanueva. Esquema en planta

Figura 95. Conducción Azután-Aldeanueva. Esquema en alzado

2.18. CONDUCCIÓN ALDEANUEVA-DAIMIEL

Figura 96. Conducción Aldeanueva-Daimiel. Función de coste

Respecto a sus costes de circulación, habría que considerar únicamente el consumo energético debido a las elevaciones del Uso y del Tajo. El coeficiente energético resultante es de 1,1 kWh/m³ y el precio de la energía 8 pts/kWh, lo que supone unos costes totales de flujo de 8,8 pts/m³. Las tablas adjuntas muestran el detalle de estas estimaciones.

Q	h_{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m ³ /s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
2.5	20	1	1200	2.7	2975	332.2	19.0	351.2	12.1	1.1	9.0
5.0	20	2	1200	2.7	2975	332.2	19.0	351.2	24.3	1.1	8.0
7.5	20	2	1500	2.5	2975	332.2	13.0	345.2	35.8	1.1	8.0
10.0	20	2	1700	2.6	2975	332.2	11.9	344.1	47.6	1.1	8.0
20.0	20	2	2400	2.7	2975	332.2	7.5	339.7	94.0	1.1	8.0
35.0	20	2	3200	2.6	2975	332.2	5.0	337.2	163.3	1.1	8.0

Tabla 91. Conducción Aldeanueva-Daimiel. Coeficientes energéticos en las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	Total costes	
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
2,5	0,0	0,0	1.1	9.0	0.0	1.1	9.0	10.1
5,0	0,0	0,0	1.1	8.0	0.0	1.1	8.0	9.0
7,5	0,0	0,0	1.1	8.0	0.0	1.1	8.0	8.8
10,0	0,0	0,0	1.1	8.0	0.0	1.1	8.0	8.8
20,0	0,0	0,0	1.1	8.0	0.0	1.1	8.0	8.7
35,0	0,0	0,0	1.1	8.0	0.0	1.1	8.0	8.6

Tabla 92. Conducción Aldeanueva-Daimiel. Costes totales de circulación

En las figuras adjuntas se muestra el detalle de esta conducción, así como el de su valoración. Como puede verse, el subtramo aguas arriba del embalse de regulación del Uso está dimensionado para una capacidad 3,5 veces mayor que el resto de la conducción, lo cual es debido a la ausencia de regulación en la fuente.

						2	5	5	,	7.	_	m³/s) 10	.0	20	0.0	3	5.0
						Importe	Importe	Importe	Importe		Importe	Importe	Importe	Importe	Importe	Importe	Importe
ſ	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 <u>ELEVACIÓN DEL TAJO</u>							3.053		5.558		7.889		10.052		17.052		22.647
Ud Estación de bombeo (4,20 q)				150.2	1	2.324	2.324	4.311	4.311	6.117	6.117	7.745	7.745	12.514	12.514	14.487	14.487
m Tubería de impulsión (4,20 q) Ud Balsa de modulación			50400.q		2099.5	0.240 113	504 225	0.438 164	920 327	0.641 213	1.346 426	0.850 261	1.785 523	1.743 439	3.659 879	3.251 667	6.825 1.335
od baisa de modulación			30400.q		2	113	223	104	321	213	0.34	201	323	433	013	007	1.555
2 ELEVACIÓN DEL USO							1.068		1.915		2.737		3.536		6.511		10.323
Ud Estación de bombeo (1,20 q)				182.0	1	866	866	1.614	1.614	2.338	2.338	3.040	3.040	5.638	5.638	8.911	8.911
m Tubería de impulsión (1,20 q)					876	0.102	89	0.157	138	0.212	186	0.268	235	0.495	434	0.850	745
Ud Balsa de modulación			14400.q		1	113	113	164	164	213	213	261	261	439	439	667	667
a managaran na 1900															4.040		4.040
3,- EMBALSE DEL USO Ud Presa de materiales sueltos	90	200				4.012	4.012 4.012	4.012	4.012 4.012	4.012	4.012 4.012	4.012	4.012 4.012	4.012	4.012 4.012	4.012	4.012 4.012
Ou Fiesa de materiales suertos	90	200			1	4.012	4.012	4.012	4.012	4.012	4.012	4.012	4.012	4.012	4.012	4.012	4.012
4 CANAL					180.637		16.456		18.067		19.612		21.215		28.574		39.340
m Sección en tierra (q)					122924	0.078	9.588	0.085	10.449	0.091	11.186	0.097	11.924	0.124	15.243	0.159	19.545
m Sección en roca (3,5q)					12842	0.153	1.965	0.213	2.735	0.279	3.583	0.343	4.405	0.414	5.317	0.552	7.089
m Sección en roca (q)					57713	0.119	6.868	0.132	7.618	0.146	8.426	0.161	9.292	0.231	13.332	0.343	19.796
5 TÚNELES					3.495		860		929		1.060		1.182		1.589		2.032
m Túnel de Sevilleja de la Jara (q)					2342	0.246	576	0.307	719	0.363	850	0.415	972	0.589	1.379	0.778	1.822
m Túnel de Robledo de Mazo (q)					610	0.246	150	0.182	111	0.182	111	0.113	111	0.182	111	0.182	111
m Túnel de Anchuras (q)					543	0.246	134	0.182	99	0.182	99	0.182	99	0.182	99	0.182	99
m Falso túnel (q)					0	0.246	0	0.307	0	0.363	0	0.415	0	0.589	0	0.778	0
6 ACUEDUCTOS					10.319 481	0.123	1.269	0.166	1.713 80	0.208	2.146 100	0.249	2.569 120	0.394	4.066 190	0.573	5.913 276
m Acueducto (q) m Acueducto del Aº La Cordobilla (q	,				401	0.123	59 51	0.166	69	0.208	87	0.249	104	0.394	164	0.573	239
m Acueducto del Aº Balsequillo (q)	<i>'</i>				461	0.123	57	0.166	77	0.208	96	0.249	115	0.394	182	0.573	264
m Acueducto del Aº La Pradera (q)					258	0.123	32	0.166	43	0.208	54	0.249	64	0.394	102	0.573	148
m Acueducto del Bº Cuadradillas (q)					262	0.123	32	0.166	43	0.208	54	0.249	65	0.394	103	0.573	150
m Acueducto del Aº Tamujoso (q)					452	0.123	56	0.166	75	0.208	94	0.249	113	0.394	178	0.573	259
m Acueducto (q)					859	0.123	106	0.166	143	0.208	179	0.249	214	0.394	338	0.573	492
m Acueducto del Aº Valle de Valdeaz	zores	(q)			278	0.123	34	0.166	46	0.208	58	0.249	69	0.394	110	0.573	159
m Acueducto Aº Cerezo(q) m Acueducto (q)					347 1457	0.123 0.123	43 179	0.166 0.166	58 242	0.208 0.208	72 303	0.249	86 363	0.394 0.394	137 574	0.573 0.573	199 835
m Acueducto (q)					1584	0.123	195	0.166	263	0.208	329	0.249	394	0.394	624	0.573	908
m Acueducto del Aº Portezuelo (q)					943	0.123	116	0.166	157	0.208	196	0.249	235	0.394	372	0.573	540
m Acueducto del Aº del Guijo (q)					428	0.123	53	0.166	71	0.208	89	0.249	107	0.394	169	0.573	245
m Acueducto (q)					2092	0.123	257	0.166	347	0.208	435	0.249	521	0.394	824	0.573	1.199
7 SIFONES					5 041		400		051		1.396		1 990		9 450		5 500
m Sifón (q)					5.941 1388	0.084	499 117	0.160	951 222	0.235	326	0.308	1.830 428	0.582	3.458 808	0.941	5.590 1.306
m Sifón (q)					1338	0.084	112	0.160	214	0.235	314	0.308	412	0.582	779	0.941	1.259
m Sifón (q)					1102	0.084	93	0.160	176	0.235	259	0.308	339	0.582	641	0.941	1.037
m Sifón (q)					949	0.084	80	0.160	152	0.235	223	0.308	292	0.582	552	0.941	893
m Sifón (q)					1164	0.084	98	0.160	186	0.235	274	0.308	359	0.582	677	0.941	1.095
PRESUPUESTO DE EJECUCION MATE	RIA	L (M	Pts.)				30.270		38.703		46.741		54.448		82.315		112.505
GASTOS GENERALES Y BENEFICIO IN				(M Pts	i.):		6.962		8.902		10.750		12.523		18.932		25.876
			AL (M Pt				37.232		47.604		57.492		66.972		101.247		138.381
		I.V.A	. (16%) (!	M Pts.):			5.957		7.617		9.199		10.715		16.200		22.141
PRESUPUESTO DE EJECUCION POR C	ON	TRAT	TA (M Pts	i.):			43.189		55.221		66.690		77.687		117.447		160.522
PRESUPUESTO CONOCIMIENTO DE I	ESUPUESTO DE EJECUCION POR CONTRATA (M Pts.): ESUPUESTO CONOCIMIENTO DE LA ADMINISTRACIÓN (M Pts								58.562		70.725		82.387		124.552		170.234

Tabla 93. Valoración de la conducción Aldeanueva-Daimiel

q Caudal continuo
 A Altura de las presas
 L Longitud de coronación de las presas
 V Volúmenes de las balsas de modulación
 H Alturas geométricas de los bombeos o de las turbinaciones

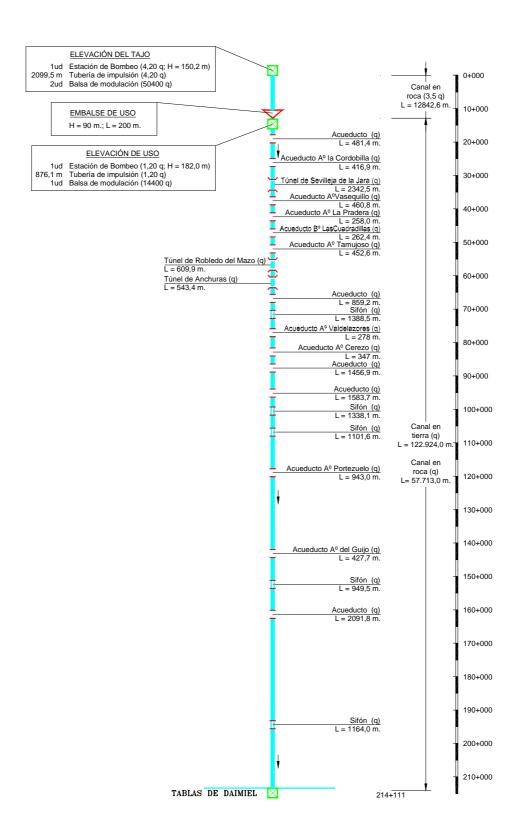


Figura 97. Conducción Aldeanueva-Daimiel. Esquema en planta

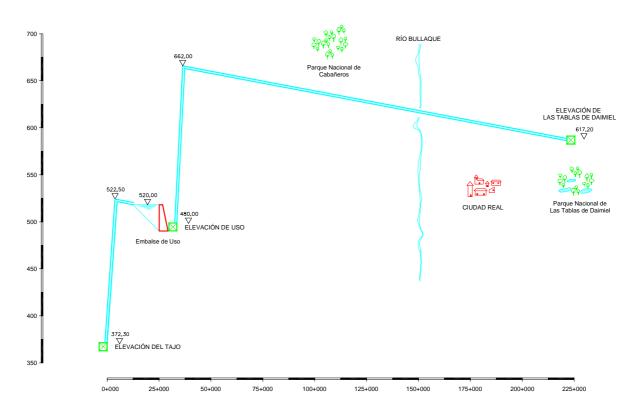


Figura 98. Conducción Aldeanueva-Daimiel. Esquema en alzado

2.19. CONDUCCIÓN DAIMIEL-MANCHA OCCIDENTAL

La función de costes del tramo es la mostrada en la figura adjunta.

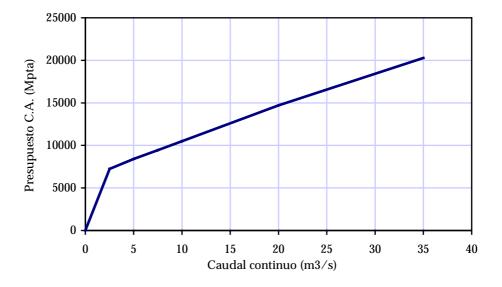


Figura 99. Conducción Daimiel-Mancha Occidental. Función de coste

Respecto a sus costes de circulación, habría que considerar únicamente el consumo energético debido a la elevación de las Tablas de Daimiel. El coeficiente energético resultante es de 0,1 kWh/m³ y el precio de la energía de 9 pts/kWh, lo que supone unos costes totales de operación aproximadamente, de 0,9 pts/m³, tal y como se detalla en las tablas adjuntas.

	Q	h_{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(n	n³/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
	2,5	20	1	1200	2,7	1018	34,6	6,5	41,1	1,4	0,1	9,0
	5,0	20	1	1700	2,6	1018	34,6	4,1	38,7	2,7	0,1	9,0
	7,5	20	1	2100	2,6	1018	34,6	3,0	37,6	3,9	0,1	9,0
1	10,0	20	1	2400	2,7	1018	34,6	2,6	37,2	5,1	0,1	9,0
2	20,0	20	1	3400	2,6	1018	34,6	1,6	36,2	10,0	0,1	9,0
3	35,0	20	1	4600	2,5	1018	34,6	1,0	35,6	17,2	0,1	8,0

Tabla 94. Conducción Daimiel-Mancha Occidental. Coeficientes energéticos en las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
2,5	0,0	0,0	0,1	9,0	0,0	0,1	9,0	0,9
5,0	0,0	0,0	0,1	9,0	0,0	0,1	9,0	0,8
7,5	0,0	0,0	0,1	9,0	0,0	0,1	9,0	0,8
10,0	0,0	0,0	0,1	9,0	0,0	0,1	9,0	0,8
20,0	0,0	0,0	0,1	9,0	0,0	0,1	9,0	0,8
35,0	0,0	0,0	0,1	8,0	0,0	0,1	8,0	0,8

Tabla 95. Conducción Daimiel-Mancha Occidental. Costes totales de circulación

						q (m³/s)											
						2,	5	ţ	i	7	,5	10),0	20	,0	35	5,0
•						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
4 PLANACIÓN MADYAC DE DANACE	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)		(Mpts/ud)		(Mpts/ud)		(Mpts/ud)		(Mpts/ud)		(Mpts/ud)	-
1 ELEVACIÓN TABLAS DE DAIMIEI							<u>460</u>		<u>719</u>		973		1.225		2.212		3.639
Ud Estación de bombeo (1,20 q)				34,6	1	244	244	395	395	544	544	691	691	1.268	1.268	2.106	2.106
m Tubería de impulsión (1,20 q)					1018	0,102	104	0,157	160	0,212	216	0,268	273	0,495	504	0,850	865
Ud Balsa de modulación			14400.q		1	113	113	164	164	213	213	261	261	439	439	667	667
2 <u>CANAL</u>					47.804		3.729		4.063		4.350		4.637		5.928		7.601
m Sección en tierra (q)					47804	0,078	3.729	0,085	4.063	0,091	4.350	0,097	4.637	0,124	5.928	0,159	7.601
3 <u>TÚNELES</u>					1.702		419		523		618		706		1.002		1.324
m Túnel de Villarubia de los Ojos(q)					1702	0,246	419	0,307	523	0,363	618	0,415	706	0,589	1.002	0,778	1.324
4 ACUEDUCTOS					1.462		180		243		304		364		576		838
m Acueducto del río Cigüela (q)					1462	0.123	180	0,166	243	0,208	304	0,249	364	0.394	576	0,573	838
						0,220		-,		0,200		-,		-,		-,	
PRESUPUESTO DE EJECUCION MATE	RIA	L (M	Pts.)				4.787		5.547		6.245		6.933		9.718		13.402
GASTOS GENERALES Y BENEFICIO II		•	,	(M P	ts.)·		1.101		1.276		1.436		1.594		2.235		3.082
GIOTOS GENERALES I BENEFICIO II			AL (M Pt	,	w.,.		5.888		6.823		7.681		8.527		11.953		16.484
			. (16%) (1):		942 6.830		1.092		1.229		1.364		1.912		2.637
PRESUPUESTO DE EJECUCION POR C	RESUPUESTO DE EJECUCION POR CONTRATA (M Pts.):								7.915		8.910		9.891		13.865		19.122
PRESUPUESTO CONOCIMIENTO DE I	LA A	DMI	NISTRA	CIÓN	(M Pts.)	:	7.244		8.393		9.449		10.490		14.704		20.279

Tabla 96. Valoración de la conducción Daimiel-Mancha Occidental

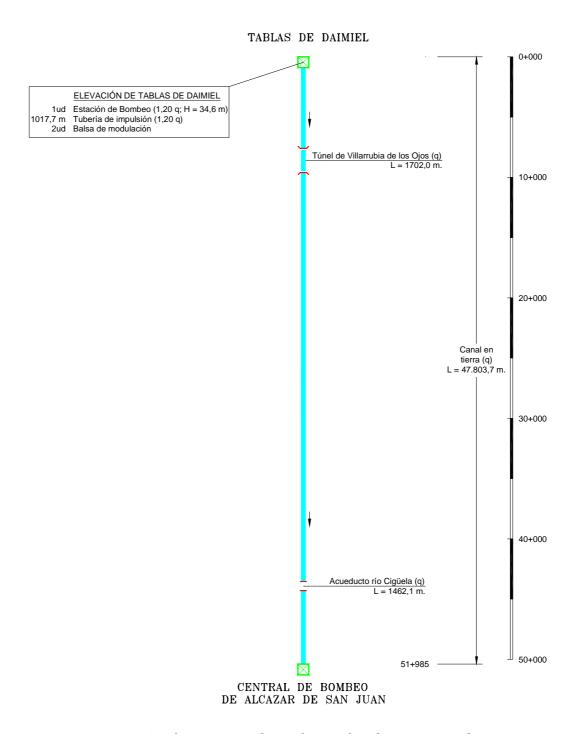


Figura 100. Conducción Daimiel-Mancha Occidental. Esquema en planta

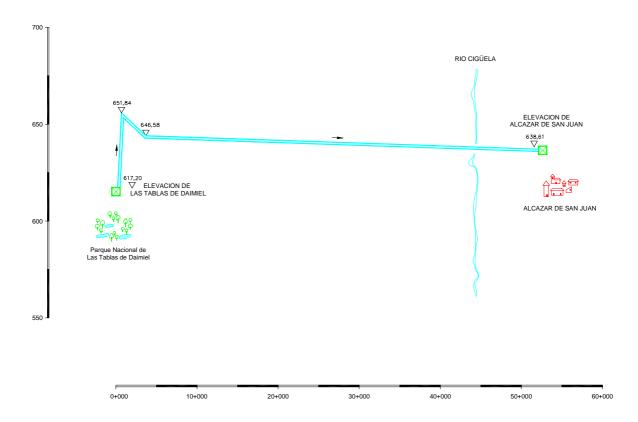


Figura 101. Conducción Daimiel-Mancha Occidental. Esquema en alzado

2.20. CONDUCCIÓN TOLEDO-MANCHA OCCIDENTAL

La función de costes de este tramo es la que se muestra en la figura adjunta.

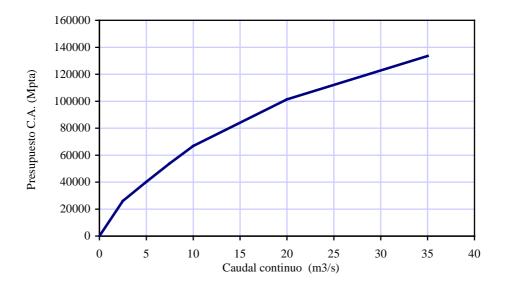


Figura 102. Conducción Toledo-Mancha Occidental. Función de coste

Respecto a sus costes de circulación, únicamente habría que considerar los debidos al consumo energético en las dos elevaciones previstas, lo que supone un coeficiente energético de 0,9 kWh/m³ en la conducción, con un precio de la energía de 8 pts/kWh, ello implica unos costes totales de flujo de unas 7 pts/m³, tal como puede verse en las tablas adjuntas.

_	Q	h _{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H_{neto}	Potencia	CE	Precio
	(m ³ /s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
_	2.5	20	2	800	3.0	4884	250.0	67.8	317.8	11.0	1.0	9.0
	5.0	20	2	1200	2.7	4884	250.0	31.2	281.2	19.5	0.9	8.0
	7.5	20	2	1500	2.5	4884	250.0	21.3	271.3	28.2	0.9	8.0
	10.0	20	2	1700	2.6	4884	250.0	19.5	269.5	37.3	0.9	8.0
	20.0	20	2	2400	2.7	4884	250.0	12.4	262.4	72.6	0.8	8.0
	35.0	20	2	3200	2.6	4884	250.0	8.2	258.2	125.0	0.8	8.0
	20.0	20	2	2400	2.7	4884	250.0	12.4	262.4	72.6	0.8	8.0

Tabla 97. Conducción Toledo-Mancha Occidental. Coeficientes energéticos en las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m ³ /s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
2,5	0,0	0,0	1.0	9.0	0.0	1.0	9.0	9.2
5,5	0,0	0,0	0.9	8.0	0.0	0.9	8.0	7.2
7,5	0,0	0,0	0.9	8.0	0.0	0.9	8.0	7.0
10,0	0,0	0,0	0.9	8.0	0.0	0.9	8.0	6.9
20,0	0,0	0,0	0.8	8.0	0.0	0.8	8.0	6.7
35,0	0,0	0,0	0.8	8.0	0.0	0.8	8.0	6.6

Tabla 98. Conducción Toledo-Mancha Occidental. Costes totales de circulación

En las figuras adjuntas se muestra el detalle de la conducción, así como su valoración. La tercera elevación no se ha valorado en este tramo, al haberse incluido en la conducción aguas abajo Mancha Occidental – La Roda. Además, el subtramo aguas arriba del existente embalse de regulación de Finisterre está dimensionado para una capacidad 3,5 veces mayor que el resto de la conducción, lo cual es debido a la ausencia de regulación en la fuente.

								3,									
						_				_		n ³ /s)					
						2.			5		.5		0.0).0		5.0
	Α	Ιī	v	н		Importe	Importe	Importe	•	-	-	Importe unitario	-		Importe	Importe	Importe
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)	(Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)	unitario (Mpts/ud)	parcial (M Pts)
1 PRIMERA ELEVACIÓN							3.556		6.595		9.331		11.772		18.597		20.068
Ud Estación de bombeo (4,20 q)				183.0	1	2.752	2.752	5.096	5.096	7.177	7.177	8.999	8.999	13.716	13.716	13.130	13.130
m Tubería de impulsión (4,20 q)					1392.1	0.240	334	0.438	610	0.641	892	0.850	1.183	1.743	2.426	3.251	4.526
m Sifón (4,20q)					1461.3	0.322	471	0.608	888	0.863	1.261	1.088	1.590	1.680	2.455	1.651	2.413
2 SEGUNDA ELEVACIÓN				07.0	_	1.000	1.538		2.780	0.045	3.986	0.000	5.159	0.000	9.532	10.001	15.143
Ud Estación de bombeo (4,20 q)				67.0	1	1.083	1.083	2.033	2.033	2.945 0.641	2.945	3.822	3.822	6.983	6.983	10.694	10.694
m Tubería de impulsión (4,20 q) Ud Balsa de modulación			50400.q		958	0.240 113	230 225	0.438 164	420 327	213	614 426	0.850 261	814 523	1.743 439	1.670 879	3.251 667	3.114 1.335
Od baisa de modulación			50400.q		۷	113	223	104	321	213	420	201	323	439	6/9	667	1.555
3 CANAL					85.419		9.455		12.126		14.940		17.647		21.328		26.413
m Sección en tierra (q)					31.490	0.078	2.456	0.085	2.677	0.091	2.866	0.097	3.055	0.124	3.905	0.159	5.007
m Sección en tierra (3,5q)					21.226	0.094	1.995	0.117	2.483	0.139	2.950	0.159	3.375	0.183	3.884	0.215	4.564
m Sección en roca (3,5q)					32703	0.153	5.004	0.213	6.966	0.279	9.124	0.343	11.217	0.414	13.539	0.515	16.842
4 SIFONES					25.963		2.655		5.056		7.378		9.601		17.530		26.590
m Sifón (3,5q); P.K.26+414					1635	0.271	443	0.516	844	0.739	1.208	0.941	1.539	1.537	2.513	1.793	2.932
m Sifón (3,5q); P.K.40+368					899	0.271	244	0.516	464	0.739	664	0.941	846	1.537	1.382	1.793	1.612
m Sifón (q); P.K.67+936					2529	0.084	212	0.160	405	0.235	594	0.308	779	0.582	1.472	0.941	2.380
m Sifón (q); P.K.96+963					20900	0.084	1.756	0.160	3.344	0.235	4.912	0.308	6.437	0.582	12.164	0.941	19.667
PRESUPUESTO DE EJECUCION MAT		,					17.204		26.556		35.635		44.178		66.988		88.214
GASTOS GENERALES Y BENEFICIO	s.):		3.957		6.108		8.196		10.161	l	15.407		20.289				
		TOT	AL (M Pts.	.)			21.161		32.664		43.831		54.339		82.395		108.503
		I.V.A	. (16%) (M	Pts.):			3.386		5.226		7.013		8.694		13.183		17.360
PRESUPUESTO DE EJECUCION POR	RESUPUESTO DE EJECUCION POR CONTRATA (M Pts.):								37.890		50.844		63.034	1	95.579		125.863
PRESUPUESTO CONOCIMIENTO DI	RESUPUESTO DE EJECUCION POR CONTRATA (M Pts.): RESUPUESTO CONOCIMIENTO DE LA ADMINISTRACIÓN (M Pt								40.183		53.920		66.847		101.361		133.478

Tabla 99. Valoración de la conducción Toledo-Mancha Occidental

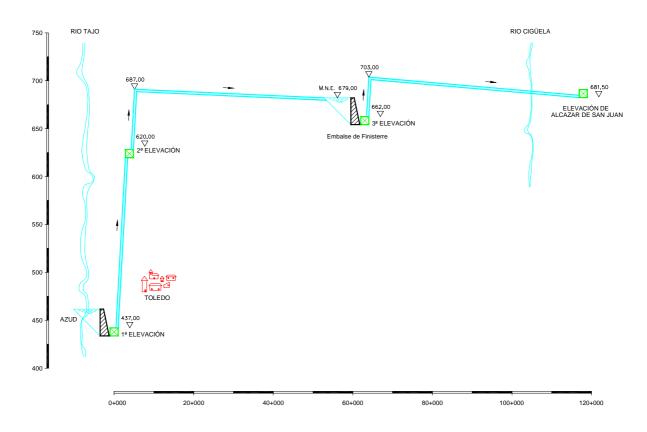


Figura 103. Conducción Toledo-Mancha Occidental. Esquema en alzado

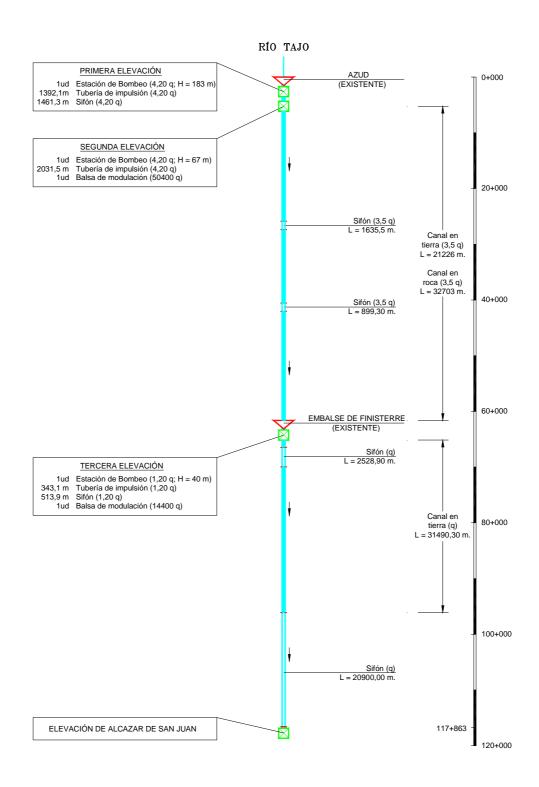


Figura 104. Conducción Toledo-Mancha Occidental. Esquema en planta

2.21. CONDUCCIÓN MANCHA OCCIDENTAL-LA RODA

La función de costes del tramo es la que se muestra en la figura adjunta.

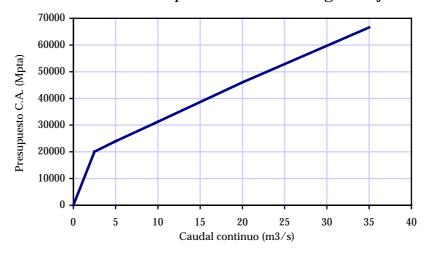


Figura 105. Conducción Mancha Occidental - La Roda. Función de coste

Respecto a sus costes de operación, habría que considerar únicamente el consumo energético debido a las elevaciones de Alcázar de San Juan, El Toboso, Mota del Cuervo y las Pedroñeras. El coeficiente energético resultante es de 0,4 ó 0,5 kWh/m³ y el precio de la energía de 8 ó 9 pts/kWh (en función ambos del caudal circulante por la conducción), lo que supone unos costes totales de circulación entre 3,5 y 5,2 pts/m³. El detalle de estas estimaciones se muestra en las tablas adjuntas.

Q	h_{func}	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
2,5	20	1	1200	2,7	11229	109,6	71,7	181,3	6,3	0,6	9,0
5,0	20	1	1700	2,6	11229	109,6	44,8	154,4	10,7	0,5	9,0
7,5	20	1	2100	2,6	11229	109,6	32,6	142,2	14,8	0,5	9,0
10,0	20	1	2400	2,7	11229	109,6	28,5	138,1	19,1	0,4	8,0
20,0	20	2	2400	2,7	11229	109,6	28,5	138,1	38,2	0,4	8,0
35,0	20	3	2600	2,6	11229	109,6	25,3	134,9	65,3	0,4	8,0

Tabla 100. Conducción Mancha Occidental-La Roda. Coeficientes energéticos en las elevaciones

-	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
2,5	0,0	0,0	0,6	9,0	0,0	0,6	9,0	5,2
5,0	0,0	0,0	0,5	9,0	0,0	0,5	9,0	4,4
7,5	0,0	0,0	0,5	9,0	0,0	0,5	9,0	4,1
10,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,5
20,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,5
35,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,5

Tabla 101. Conducción Mancha Occidental-La Roda. Costes totales de circulación

											q (n	1 ³ /s)					
						2	,5		j .	7,		10	,0	20),0	35	5,0
_						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACIÓN ALCAZAR DE SAN J	UAN						1.309		1.973		2.622		3.267		5.803		9.557
Ud Estación de bombeo (1,20 q)				41,0	1	394	394	603	603	800	800	989	989	1.711	1.711	2.730	2.730
m Tubería de impulsión (1,20 q)					1747	0,102	178	0,157	274	0,212	370	0,268	468	0,495	865	0,850	1.485
m Conducción chimenea-balsa (1,20	q)				4674	0,102	477	0,157	734	0,212	991	0,268	1.253	0,495	2.314	0,850	3.973
Ud Chimenea de equilibrio					1	34	34	34	34	34	34	34	34	34	34	34	34
Ud Balsa de modulación			14400.q		2	113	225	164	327	213	426	261	523	439	879	667	1.335
2 ELEVACION DE EL TOBOSO							499		740		976		1.208		2.107		3.380
Ud Estación de bombeo (1,20 q)				19,0	1	176	176	262	262	346	346	429	429	754	754	1.230	1.230
m Tubería de impulsión (1,20 q)					958	0,102	98	0,157	150	0,212	203	0,268	257	0,495	474	0,850	814
Ud Balsa de modulación			14400.q		2	113	225	164	327	213	426	261	523	439	879	667	1.335
a FLEWACION DE MOTA DEL CHE																	
3 ELEVACION DE MOTA DEL CUER	WO						<u>752</u>		1.116		1.471		1.824		3.200		5.207
Ud Estación de bombeo (1,20 q)				19,0	1	223	223	321	321	413	413	502	502	845	845	1.338	1.338
m Tubería de impulsión (1,20 q)					2981	0,102	304	0,157	468	0,212	632	0,268	799	0,495	1.476	0,850	2.534
Ud Balsa de modulación			14400.q		2	113	225	164	327	213	426	261	523	439	879	667	1.335
4 <u>ELEVACIÓN DE LAS PEDROÑER</u> A	AS						535		817		1.093		1.366		2.423		3.921
Ud Estación de bombeo (1,20 q)				30,0	1	221	221	352	352	482	482	609	609	1.112	1.112	1.845	1.845
m Tubería de impulsión (1,20 q)					872	0,102	89	0,157	137	0,212	185	0,268	234	0,495	432	0,850	741
Ud Balsa de modulación			14400.q		2	113	225	164	327	213	426	261	523	439	879	667	1.335
5 <u>CANAL</u>					127.327		9.932		10.823		11.587		12.351		15.789		<u>20.245</u>
m Sección en tierra (q)					127.327	0,078	9.932	0,085	10.823	0,091	11.587	0,097	12.351	0,124	15.789	0,159	20.245
6 ACUEDUCTOS					1.398		172		232		291		348		551		801
m Acueducto del Aº Zanja de la Mot	illa (q)			473	0,123	58	0,166	79	0,208	98	0,249	118	0,394	186	0,573	271
m Acueducto del río Monreal (q)		ĺ			443	0,123	54	0,166	74	0,208	92	0,249	110	0,394	175	0,573	254
m Acueducto del río Záncara (q)					482	0,123	59	0,166	80	0,208	100	0,249	120	0,394	190	0,573	276
7 SIFONES					962		<u>81</u>		154		226		<u>296</u>		<u>560</u>		<u>905</u>
m Sifón (q); P.K. 107					496	0,084	42	0,160	79	0,235	117	0,308	153	0,582	289	0,941	467
m Sifón (q); P.K. 118					466	0,084	39	0,160	75	0,235	110	0,308	144	0,582	271	0,941	439
PRESUPUESTO DE EJECUCION MAT		•					13.280		15.855		18.265		20.660		30.432		44.015
GASTOS GENERALES Y BENEFICIO	IND	USTI	RIAL (23%)	(M P	ts.):		3.054		3.647		4.201		4.752		6.999		10.124
		TOT	AL (M Pts.)			16.334		19.501		22.466		25.412		37.432		54.139
		I.V.A	. (16%) (M	Pts.):			2.613		3.120		3.595		4.066		5.989		8.662
PRESUPUESTO DE EJECUCION POR	COI	NTRA	TA (M Pts	i.):			18.948		22.621		26.061		29.478		43.421		62.801
PRESUPUESTO CONOCIMIENTO DE	RESUPUESTO DE EJECUCION POR CONTRATA (M Pts.): RESUPUESTO CONOCIMIENTO DE LA ADMINISTRACIÓN (M P										27.638		31.261		46.048		66.600

Tabla 102. Valoración de la conducción Mancha Occidental-La Roda

q Caudal continuo

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

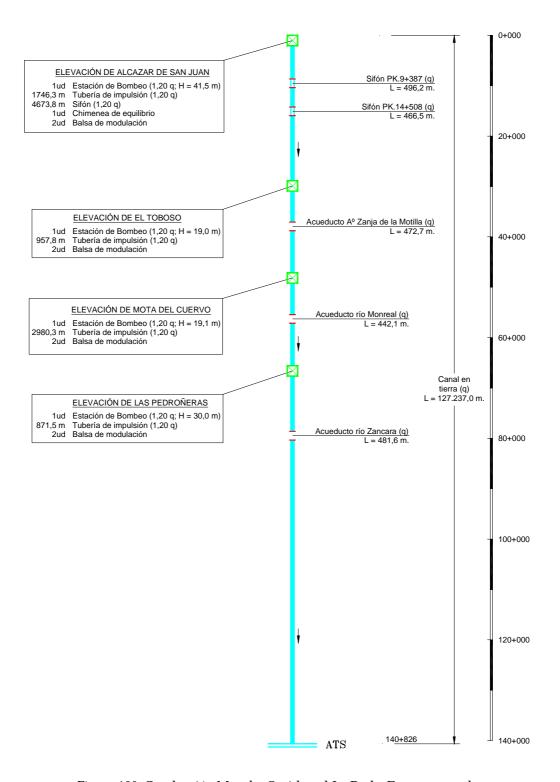


Figura 106. Conducción Mancha Occidental-La Roda. Esquema en planta

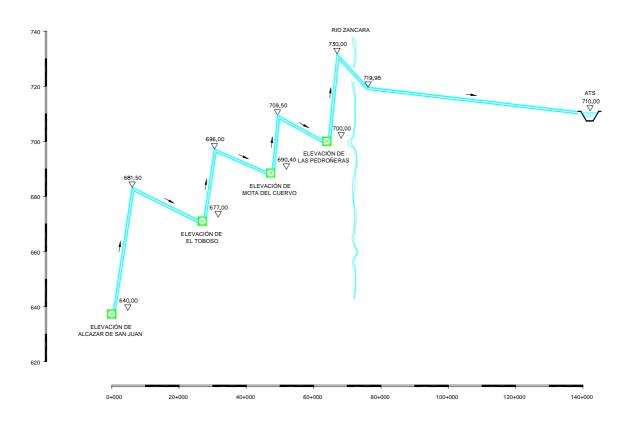


Figura 107. Conducción Mancha Occidental-La Roda. Esquema en alzado

2.22. CONDUCCIÓN BOLARQUE-CIGÜELA

Corresponde al primer tramo (de un total de cinco) del actualmente existente Acueducto Tajo–Segura (ATS). La infraestructura actual de este tramo del ATS es suficiente para el transporte de un caudal estimado en aproximadamente 33 m³/s (excepto la elevación de Bolarque prevista para funcionar en 12 horas, con una capacidad máxima de 66 m³/s), por lo que para la valoración de costes del tramo se han seguido los siguientes criterios:

- para caudales circulantes menores de 33 m³/s se supone coste nulo (utilización de la infraestructura ya existente).
- para caudales entre 33 y 37 m³/s habría que recrecer el actual canal, pero puede suponerse razonablemente que los bombeos, sifones, acueductos e impulsiones serán suficientes gracias a los amplios resguardos con que este tipo de obras suelen diseñarse.
- para caudales mayores de 37 m³/s, además de recrecer el canal, habría que ampliar la estación de bombeo de la Bujeda, los sifones, los acueductos y las impulsiones, hasta que tuvieran capacidad para el nuevo caudal de diseño de la conducción. En la elevación de Bolarque, habida cuenta que su capacidad máxima es de 65 m³/s, no se hace necesario contemplar su ampliación.

La valoración del recrecimiento de un canal, conforme se explicó en el correspondiente epígrafe del presente Anejo, se ha supuesto sea la mitad del importe que supondría la ejecución de dicho canal de nueva construcción.

La ampliación de los elementos singulares de la conducción (estaciones de bombeo, sifones, túneles y acueductos) por encima de sus caudales de diseño se ha valorado suponiendo se construyera otra obra hidráulica similar, de capacidad igual a la diferencia entre el nuevo caudal de diseño y el de la obra actual.

En el caso de que el incremento de caudal circulantes sea menor de un 10-15% se ha supuesto que en las obras singulares (túneles, acueductos, sifones, etc) se pueda utilizar el resguardo, y que solo haya que construir una nueva obra singular de capacidad la diferencia entre el nuevo caudal y el de diseño si se supera este procentaje, ya que en caso contrario para los valores de los caudales inmediatamente siguientes al de la capacidad de diseño habría que construir una obra hidráulica de muy pequeña capacidad (1 ó 2 m³/s, por ejemplo) lo cuál resulta antieconómico. En cualquier caso, como el reguardo habitual de este tipo de obras suele estar por encima del 20% (como puede verse en la tabla adjunta procedente de las conducciones estudiadas en los "Estudios Previos de viabilidad de determinados aprovechamientos a considerar en el P.H.N"; Inypsa y Synconsult, 1.996) se mantiene siempre una seguridad razonable9.

Transferencia	Tipo de obra singular	Capacidad diseño (m³/s)	Capacidad real (m ³ /s)	Resguardo (%)
				. ,
Duero-Tajo	Acueducto	16,7	20,4	22
Jarama-Bolarque	Acueducto	8,5	10,0	19
Jarama-La Bujeda	Túnel	10,2	12,46	20
Duero-Tajo	Túnel	33	38,20	16
Jarama-Bolarque	Túnel	8,5	12,13	43
Tajo-Guadalquivir	Túnel	7,23	8,56	19

Tabla 103. Resguardos en obras singulares

Con todo ello, la función de costes del tramo finalmente resultante es la que se muestra en la figura adjunta. Como puede verse, dicha función de costes queda claramente dividida en distintos tramos, en función del grado de ampliación que requiere la conducción actual, conforme a los criterios indicados anteriormente.

.

⁹ El túnel de Tebar, por ejemplo, de 4,20 metros de diámetro interior y pendiente 0,13% tiene una capacidad real de cerca de 39 m³/s frente a un caudal de diseño de 33 m³/s, esto es, casi un 20% más.

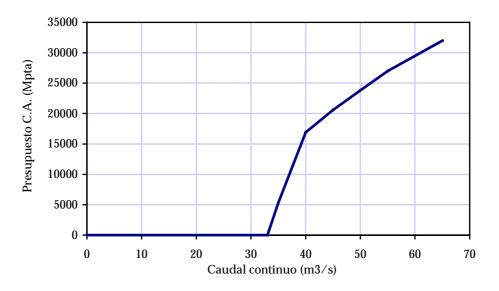


Figura 108. Conducción Bolarque-Cigüela. Función de coste

Respecto a los costes de circulación de este tramo, habría que considerar únicamente los debidos al consumo energético en las elevaciones de Bolarque y de la Bujeda. Para su cuantificación, se ha supuesto en un precio global de elevación, utilizando la instalación existente, valorado en principio en 5,5 pts/m³ para cualquier valor del caudal que se movilice, conforme puede verse en las tablas adjuntas.

Q	h _{func}	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
35,0	0	0	0	0,0	0	0,0	0,0	0,0	0,0	0,00	0,0
40,0	24	2	3100	2,6	78	12,0	0,1	12,1	5,6	0,04	9,0
45,0	24	2	3300	2,6	78	12,0	0,1	12,1	6,3	0,04	9,0
50,0	24	2	3500	2,6	78	12,0	0,1	12,1	7,0	0,04	9,0
55,0	24	3	3000	2,6	78	12,0	0,1	12,1	7,7	0,04	9,0
65,0	24	4	2800	2,6	78	12,0	0,2	12,2	9,1	0,04	9,0

Tabla 104. Conducción Bolarque-Cigüela. Coeficientes energéticos en las elevaciones

	Turbina	nciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	Operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
35,0	0,0	0,0	0,00	0,0	5,5	0,00	5,5	5,5
40,0	0,0	0,0	0,04	9,0	5,2	0,04	142,7	5,5
45,0	0,0	0,0	0,04	9,0	5,2	0,04	142,9	5,5
50,0	0,0	0,0	0,04	9,0	5,2	0,04	143,0	5,5
55,0	0,0	0,0	0,04	9,0	5,2	0,04	142,7	5,5
65,0	0,0	0,0	0,04	9,0	5,2	0,04	142,5	5,6

Tabla 105. Conducción Bolarque-Cigüela. Costes totales de circulación

											q (n	n ³ /s)					
						3	5	4	0	4	5	5	0	5	5	6	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
1,- ELEVACION DE BOLARQUE	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
							<u>0</u>		<u>0</u>		<u>0</u>		<u>0</u>		<u>0</u>		<u>0</u>
Ud Estación de bombeo				267	1	0	0	0	0	0	0	0	0	0	0	0	0
m Tubería de impulsión					1197	0,000	0	0,000	0	0,000	0	0,000	0	0,000	0	0,000	0
2 ELEVACION DE LA BUJEDA							0		208		300		392		484		666
Ud Estación de bombeo (q-35)				12	1	0	0	195	195	280	280	364	364	448	448	615	615
m Tubería de impulsión (q-35)					78	0,000	0	0.175	14	0.268	21	0,362	28	0,457	36	0.651	51
Part (4.7)						.,		.,				.,				.,	
3,- <u>CANAL</u>					34.063		3.520		3.742		3.919		4.052		4.428		4.769
m Canal de Riansares (q)					20471	0,103	2.116	0,110	2.249	0,115	2.355	0,119	2.435	0,130	2.661	0,140	2.866
m Canal de Villarejo (q)					13592	0,103	1.405	0,110	1.493	0,115	1.564	0,119	1.617	0,130	1.767	0,140	1.903
4 ACUEDUCTOS					3.778		<u>0</u>		<u>756</u>		1.058		1.334		1.591		2.044
m Acueducto (q-35)					199	0,000	0		40	0,280	56		70	0,421	84	0,541	108
m Acueducto (q-35)					394	0,000	0	0,200	79	0,280	110	0,353	139	0,421	166	0,541	213
m Acueducto (q-35)					112	0,000	0		22	0,280	31	0,353	40	0,421	47	0,541	61
m Acueducto (q-35)					94	0,000	0	0,200	19	0,280	26		33		40	0,541	51
m Acueducto (q-35)					167	0,000	0	0,200	33	0,280	47	0,353	59	0,421	70	0,541	90
m Acueducto de Riansares (q-35)					2812	0,000	U	0,200	562	0,280	787	0,353	993	0,421	1.184	0,541	1.521
5 TUNELES					18.363		<u>o</u>		6.464		8.337		9.953		11.348		13.680
m Túnel de Altomira (q-35)					13596	0,000	0	0,352	4.786	0,454	6.173	0,542	7.369	0,618	8.402	0,745	10.129
m Túnel nº1 (q-35)					220	0,000	0	0,352	77	0,454	100	0,542	119	0,618	136	0,745	164
m Túnel nº2 (q)-35					322	0,000	0	0,352	113	0,454	146	0,542	175	0,618	199	0,745	240
m Túnel nº5 (q-35)					243	0,000	0	0,352	86	0,454	110	0,542	132	0,618	150	0,745	181
m Túnel nº6 (q-35)					325	0,000	0	0,352	114	0,454	148	0,542	176	0,618	201	0,745	242
m Túnel nº7 (q-35)					1039	0,000	0	0,352	366	0,454	472	0,542	563	0,618	642	0,745	774
m Túnel nº8 (q-35)				l	457	0,000	0	0,352	161	0,454	207	0,542	248	0,618	282	0,745	340
m Túnel nº9 (q-35)					2161	0,000	0	0,352	761	0,454	981	0,542	1.171	0,618	1.335	0,745	1.610
			3.520		11.170												
	PRESUPUESTO DE EJECUCION MATERIAL (M Pts.)										13.614		15.730		17.851		21.159
GASTOS GENERALES Y BENEFICIO IN	NDUS				Pts.):		810		2.569		3.131		3.618		4.106		4.867
			AL (M				4.330		13.739		16.745		19.348		21.956		26.026
		I.V.A	A. (16%) (M P	ts.):		693		2.198		2.679		3.096		3.513		4.164
PRESUPUESTO DE EJECUCION POR C	ONT	RAT	4 (M P	ts.):			5.023		15.937		19.424		22.444		25.469		30.190
PRESUPUESTO CONOCIMIENTO DE I	A A	DMI	NISTR.	ACIÓ	N (M Pts.)	:	5.327		16.901		20.600		23.802		27.010		32.016

q Caudal continuo

Tabla 106. Valoración de la conducción Bolarque-Cigüela

En los gráficos adjuntos se representan tanto un esquema general de todo el acueducto Tajo-Segura, como el detalle concreto de las obras de la conducción Bolarque-Cigüela.

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

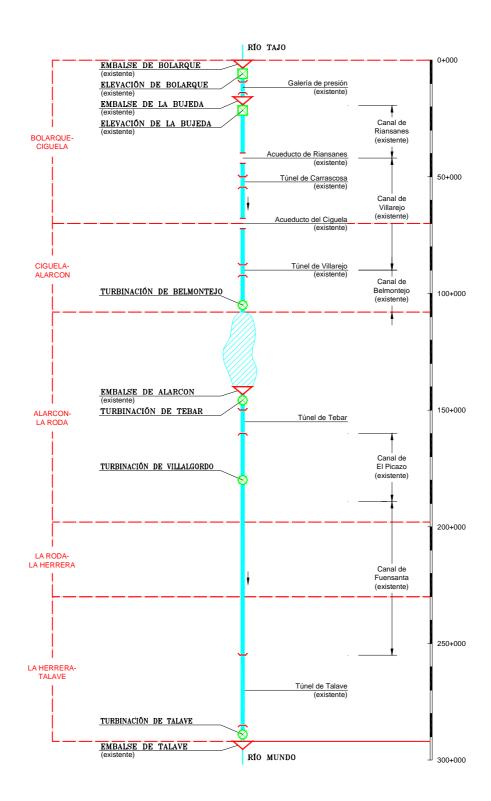


Figura 109. Acueducto Tajo-Segura. Esquema en planta

Figura 110. Acueducto Tajo-Segura. Tramo Bolarque-Cigüela. Esquema en planta

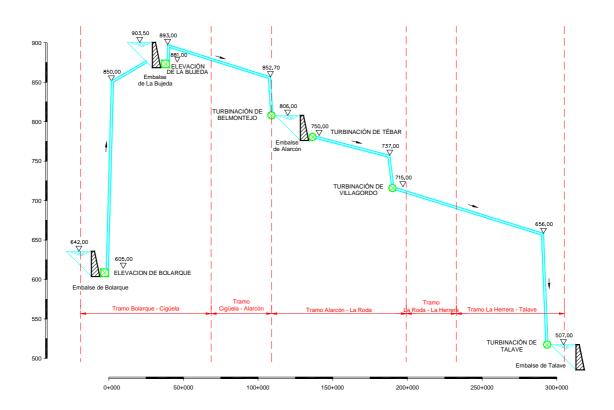


Figura 111. Acueducto Tajo-Segura. Esquema en alzado

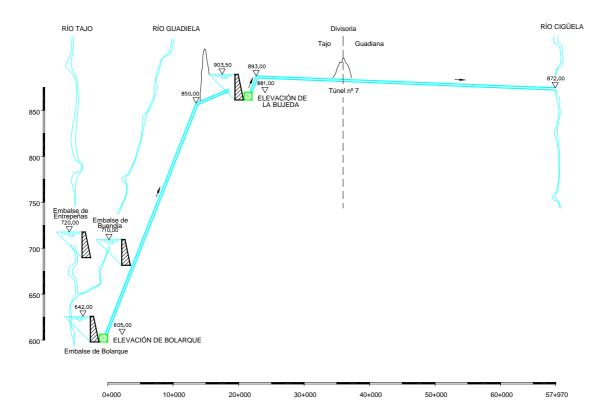


Figura 112. Acueducto Tajo-Segura. Tramo Bolarque-Cigüela. Esquema en alzado

2.23. CONDUCCIÓN CIGÜELA-ALARCÓN

Esta conducción corresponde al segundo tramo del actual Acueducto Tajo–Segura. Al igual que en el caso anterior, la infraestructura existente es suficiente para transportar un caudal de 33 m³/s, por lo que hasta ese caudal no hay que ampliar obra alguna. Entre 33 y 35 m³/s se habrá de recrecer el canal, y por encima de este valor se ampliarán tanto los acueductos como los túneles. Además, en este tramo, y para caudales superiores a 35 m³/s, puede acometerse la construcción del previsto salto hidroeléctrico de Belmontejo. Con todo ello, la función global de costes finalmente resultante es la mostrada en la figura adjunta.

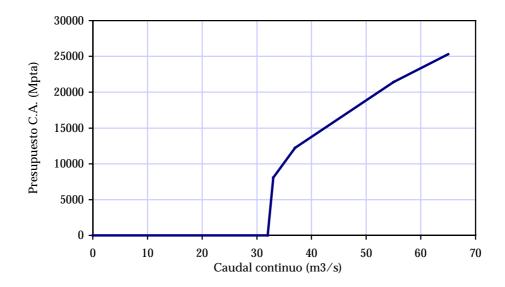


Figura 113. Conducción Cigüela-Alarcón. Función de coste

Respecto a los costes de circulación del tramo, habría que considerar únicamente el beneficio energético generado por la turbinación de Belmontejo, cuyo coeficiente energético es de -0,1 kWh/m³, con una tarifa eléctrica de 13,6 pts/kWh, lo que supone unos costes totales de flujo de -1,3 pts/m³. Las tablas adjuntas muestran el detalle de estas estimaciones.

Q	h _{func}	Nº	D	v	L	H _{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
10,0	0	0	0	0	0	0	0	0	0	0	0
33,0	24	2	2600	3,1	1195	40,0	3,7	36,3	10,56	-0,1	13,6
35,0	24	2	2700	3,1	1195	40,0	3,4	36,6	11,29	-0,1	13,5
37,0	24	2	2800	3,0	1195	40,0	3,2	36,8	12,02	-0,1	13,4
55,0	24	2	3400	3,0	1195	40,0	2,5	37,5	18,20	-0,1	12,4
65,0	24	2	3700	3,0	1195	40,0	2,2	37,8	21,67	-0,1	11,8

Tabla 107. Conducción Cigüela - Alarcón. Coeficientes energéticos en las turbinaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
10	0	0	0,0	0,0	0,0	0	0	0
33	-0,1	13,6	0,0	0,0	0,0	-0,1	13,6	-1,2
35	-0,1	13,5	0,0	0,0	0,0	-0,1	13,5	-1,2
37	-0,1	13,4	0,0	0,0	0,0	-0,1	13,4	-1,2
55	-0,1	12,4	0,0	0,0	0,0	-0,1	12,4	-1,1
65	-0,1	11,8	0,0	0,0	0,0	-0,1	11,8	-1,1

Tabla 108. Conducción Cigüela - Alarcón. Costes totales de circulación

											q (n	n ³ /s)					
						1	0	3	3	3	5	3	7	5	5	6	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
1. TURBINACION DE BELMONTEJO.	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
							<u>0</u>		2.023		2.132		2.240		3.147		3.603
Ud Central de Turbinación (q)				40	1	0	0	2.023	2.023		2.132	2.240	2.240	3.147	3.147	3.603	3.603
m Tubería forzada (q)					1195	0,000	0	0,000	0	0,710	848	0,750	896	1,117	1.335	1,328	1.587
2,- CANAL					32.913		•		3.316		0.400		0.407		4 970		4 000
m Canal de Villarejo (q)					32.913 19051	0.000	<u>0</u> 0		1.919		3.402 1.969	0.106	3.487 2.018	0.130	4.279 2.477	0.140	4.608 2.667
m Canal de Belmontejo (q)					13862	0.000	0	0,101	1.397	0,103	1.433	0,106	1.469	0,130	1.802	0,140	1.941
iii Canai de Bennontejo (q)					13002	0,000	U	0,101	1.337	0,103	1.433	0,100	1.409	0,130	1.002	0,140	1.541
4 ACUEDUCTOS					7.570		0		0		0		863		2.983		3.921
m Acueducto de Cigüela (q-35)					6485	0,000	0	0,000	0		0	0,114	739	0,394	2.555	0,518	3.359
m Acueducto (q-35)					872	0,000	0	0,000	0		0		99	0,394	344	0,518	452
m Acueducto (q-35)					213	0,000	0	0,000	0	0,000	0	0,114	24	0,394	84	0,518	110
5 <u>TÜNELES</u>					6.371		0		<u>0</u>		0		1.491		3.753		4.600
m Túnel nº11A (q-35)					733	0,000	0	0,000	0	0,000	0	0,234	172	0,589	432	0,722	529
m Túnel nº11B (q-35)					645	0,000	0	0,000	0	0,000	0	0,234	151	0,589	380	0,722	466
m Túnel de Villarejo (q)-35					4993	0,000	0	0,000	0	0,000	0	0,234	1.168	0,589	2.941	0,722	3.605
PRESUPUESTO DE EJECUCION MATERIA	AL (N	I Pts.)					0		5.339		5.534		8.081		14.160		16.732
GASTOS GENERALES Y BENEFICIO IND	(23%) (M Pts.):		0		1.228	1	1.273		1.859	1	3.257		3.848		
	AL (M	Pts.)			0		6.567		6.807		9.939		17.417		20.580		
		I.V.A	. (16%)	(M Pt	s.):		0		1.051	1	1.089		1.590	1	2.787		3.293
PRESUPUESTO DE EJECUCION POR COM	TA (M Pts.):	:			0		7.618		7.896		11.529		20.204		23.873	
PRESUPUESTO CONOCIMIENTO DE LA	ADM	IINIS	TRACI	ÓN (I	M Pts.):		0		8.079		8.373		12.227		21.426		25.318

q Caudal continuo

Tabla 109. Valoración de la conducción Cigüela - Alarcón

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

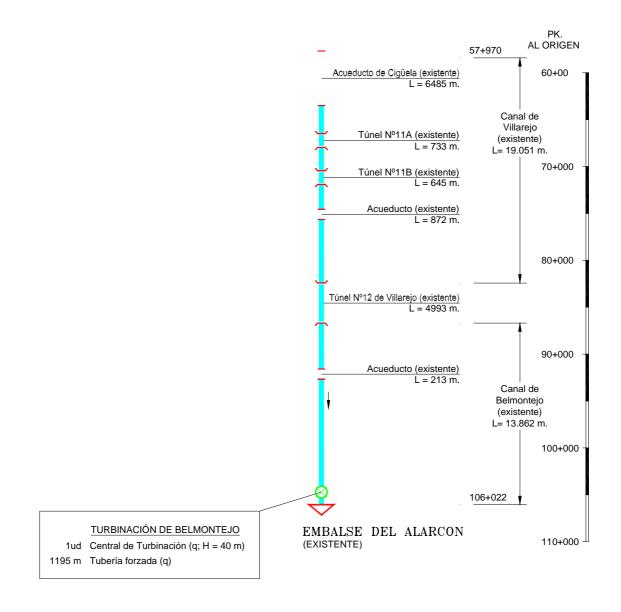


Figura 114. Conducción Cigüela - Alarcón. Esquema en planta

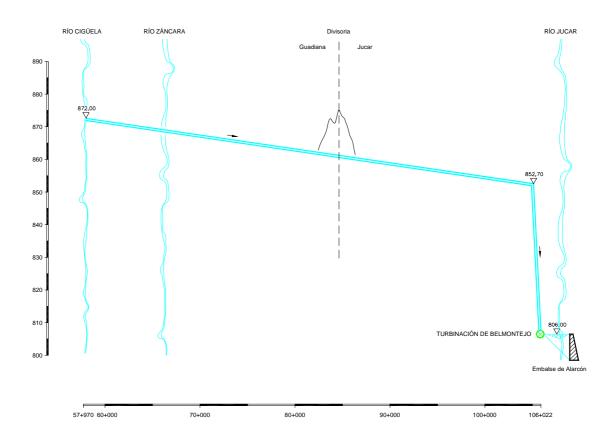


Figura 115. Conducción Cigüela - Alarcón. Esquema en alzado

2.24. CONDUCCIÓN ALARCÓN-LA RODA

Corresponde al tercer tramo del actual Acueducto Tajo–Segura. En este caso, la infraestructura existente de este tramo del ATS no es suficiente para transportar un caudal de 33 m³/s, presentando un estrangulamiento en el actual túnel de Tébar (con una capacidad de transporte máxima de 23 m³/s) por lo que debe plantearse la construccion de uno nuevo. Por lo demás, y al igual que en los tramos anteriores, para caudales por encima de los 33 m³/s habría que ampliar las actuales conducciones del ATS. Además, existe la oportunidad de construir dos saltos hidroeléctricos, uno entre el embalse de Alarcón y el nuevo túnel de Tébar y el otro aprovechando la rápida de Villalgordo, los cuales se consideran a efectos de valoraciones, desde un caudal transportado de 35 m³/s.

Con todo ello, la función global de costes resulta ser la que se muestra en la figura adjunta, obtenida a partir de la valoración de la conducción, realizada conforme a la metodología explicada anteriormente.

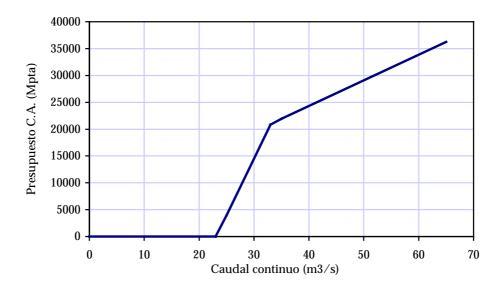


Figura 116. Conducción Alarcón-La Roda. Función de coste

Respecto a los costes de circulación de este tramo, y al igual que en el caso anterior, habría que considerar únicamente el beneficio energético generado por las nuevas turbinaciones de Tébar y Villalgordo, resultando un coeficiente energético para la conducción de -0.2 kWh/m³ y una tarifa eléctrica variable entre 11.7 y 13.6 pts/kWh, lo que supone unos costes totales de operación de unas -2.5 pts/m³, tal y como se detalla en las tablas adjuntas.

Q	h_{func}	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
10,0	0	0	0	0	0	0	0	0	0	0	0
23,0	0	0	0	0	0	0	0	0	0	0	0
25,0	0	0	0	0	0	0	0	0	0	0	0
33,0	24	2	2600	3,1	782	78,0	2,4	75,6	21,99	-0,2	11,7
35,0	24	2	2700	3,1	782	78,0	2,2	75,8	23,38	-0,2	11,5
65,0	24	2	3700	3,0	782	78,0	1,4	76,6	43,89	-0,2	8,1

Tabla 110. Conducción Alarcón-La Roda. Coeficientes energéticos en las turbinaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
10,0	0	0	0,0	0,0	0,0	0	0	0
23,0	0	0	0,0	0,0	0,0	0	0	0
25,0	0	0	0,0	0,0	0,0	0	0	0
33,0	-0,2	11,7	0,0	0,0	0,0	-0,2	11,7	-2,2
35,0	-0,2	11,5	0,0	0,0	0,0	-0,2	11,5	-2,1
65,0	-0,2	8,1	0,0	0,0	0,0	-0,2	8,1	-1,5

Tabla 111. Conducción Alarcón-La Roda. Costes totales de circulación

												n ³ /s)				ı	
						1		2		2			3	3		6	
	_	-		**		Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 TURBINACION DE VILLALGORDO															1 000		0.000
				22		0	<u>u</u> 0	0	<u>u</u> 0	0	<u>u</u>	0	<u>0</u> 0		1.383 1.383	0.000	2.339 2.339
Ud Central de Turbinación (q)				22	700	_	0		0		·	-	0			2.339	
m Tubería forzada (q)					782	0,000	U	0,000	U	0,000	0	0,000	U	0,710	555	1,328	1.038
2 TURBINACION DE TÉBAR															2.798		4 000
Ud Central de Turbinación (q)				56	1	0	<u>u</u>	0	0	0	<u>u</u>	0	<u>0</u>	2.798	2.798	4.690	4.690 4.690
od Central de Furbinación (q)				30	1	U	U	٠	U	"	U	U	U	2.190	2.130	4.090	4.090
3,- CANAL					49.935						0				5.143		6.991
m Canal de El Picazo (q)					29550	0	<u>u</u>	0	0	0	0	0,101	<u>0</u>		3.044	0,140	4.137
m Canal de El Ficazo (q)					20385	0	0	0	0	0	0	0,101	0	0,100	2.100	0,140	2.854
III Canai de Fuensanta (q)					20363	U	U	٠	U	"	U	0,101	U	0,103	2.100	0,140	2.034
4 ACUEDUCTOS					546		0		0		0		<u>0</u>		81		295
m Acueducto de Cigüela (q-35)					546	0	0	0	0	0	0	0,000	0		81	0,541	295
iii Acacadeto de Olgacia (q 55)					340	0	Ü	ľ	Ü	ľ	·	0,000	Ü	0,143	01	0,341	233
5 SIFONES					96		0		0		0		0		19		84
m Sifón (q-35)					96	0,005	0	0.005	0	0.005	0	0.005	0	0.130	12 12	0.874	84
iii Biloli (q 55)					30	0,003	Ü	0,003	· ·	0,003	·	0,003	Ü	0,130	12	0,014	01
6 TÚNELES					11.227		0		0		2.627		4.659		5.097		9.554
m Túnel de Tébar (q-23)					11227	0	0	0	0	0,234	2.627	0,415	4.659		5.097	0,851	9.554
m runer de resul (4 20)					11221	Ü	Ü	ľ	·	0,201	2.021	0,110	1.000	0,101	0.007	0,001	0.001
	ш											 					
PRESUPUESTO DE EJECUCION MATERI.	AI. (N	(Ptc)					n		n		2.628		4.660		14.515		23.953
GASTOS GENERALES Y BENEFICIO IND	e)·		0		0		604		1.072		3.338		5.509				
GASTOS GENERALES I BENEFICIO IND	,.,.		1				3.232		5.731		17.853		29.462				
			AL (M (16%)	-					1								
	TS.):		0		0		517		917	l	2.857		4.714				
PRESUPUESTO DE EJECUCION POR COM							1		1		3.749		6.648		20.710		34.176
PRESUPUESTO CONOCIMIENTO DE LA	ADM	IINIS	TRAC	IÓN (M Pts.):		1	l	1	l	3.976	l	7.051	l	21.963		36.243

q Caudal continuo

Tabla 112. Valoración de la conducción Alarcón-La Roda

A Altura de las presas
 L Longitud de coronación de las presas
 V Volúmenes de las balsas de modulación
 H Alturas geométricas de los bombeos o de las turbinaciones

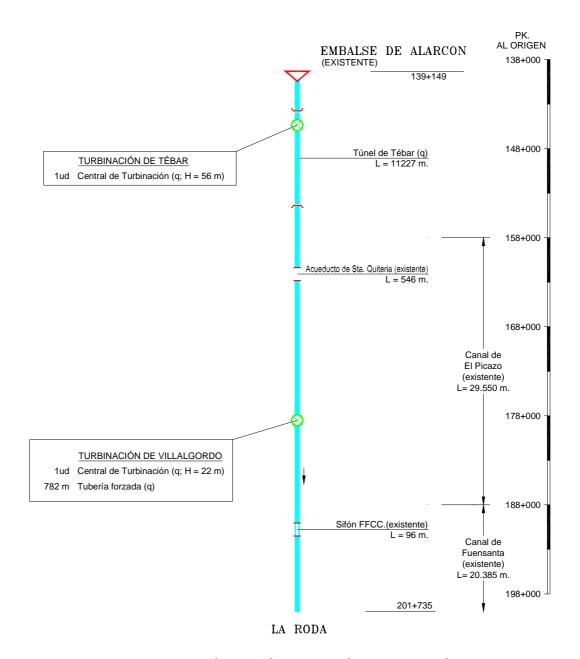


Figura 117. Conducción Alarcón-La Roda. Esquema en planta

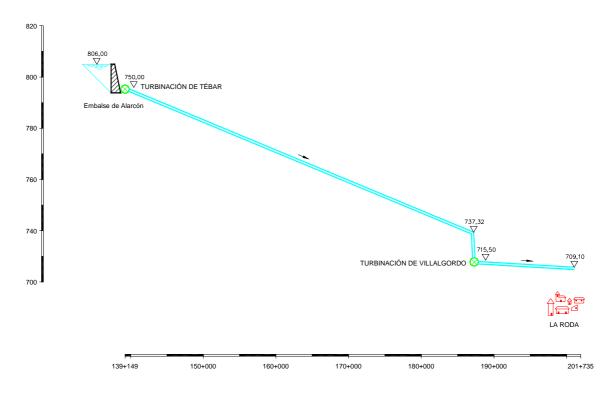


Figura 118. Conducción Alarcón-La Roda. Esquema en alzado

2.25. CONDUCCIÓN LA RODA-LA HERRERA

Corresponde al cuarto tramo del actual Acueducto Tajo–Segura. En este caso, la infraestructura existente (exclusivamente un canal en lámina libre) es suficiente para transportar un caudal de hasta 33 m³/s, por lo que la función de costes de esta conducción sería constante de valor 0 pts. hasta dicho valor, debiéndose recrecer el canal existente en la actualidad para valores superiores. Así, la función de costes resultante es la que se adjunta a continuación.

Respecto a los costes de circulación, son nulos al no haber en el tramo elevaciones, turbinaciones, ni elementos singulares.

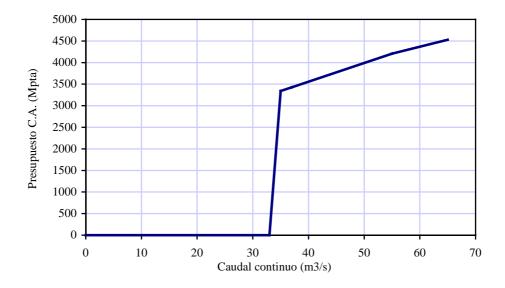


Figura 119. Conducción La Roda-La Herrera. Función de coste

											q (n	n ³ /s)					
						1	0	3	3	3			7	5	5	6	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1,- <u>CANAL</u>				21.375		<u>0</u>		<u>0</u>		2.209		2.265		2.779		2.993	
m Canal de Fuensanta (q)		21375	0,000	0	0,000	0	0,103	2.209	0,106	2.265	0,130	2.779	0,140	2.993			
-																	
PRESUPUESTO DE EJECUCION MATERI	AL (I	M Pts.)				0		0		2.209		2.265		2.779		2.993
GASTOS GENERALES Y BENEFICIO IND	UST	RIAL	(23%)	(M Pt	s.):		0		0		508		521		639		688
			0		0		2.717		2.786		3.418		3.681				
	ts.):		0		0		435		446		547		589				
PRESUPUESTO DE EJECUCION POR CO	ATA (M Pts.)	:			0		0		3.152		3.231		3.965		4.270	
PRESUPUESTO CONOCIMIENTO DE LA	ADN	MINIS	TRAC	IÓN	(M Pts.):		0		0		3.343		3.427		4.205		4.528

q Caudal continuo

Tabla 113. Valoración de la conducción La Roda-La Herrera

A Altura de las presas

L Longitud de coronación de las presas V Volúmenes de las balsas de modulación

V Volúmenes de las balsas de modulación H Alturas geométricas de los bombeos o de las turbinaciones

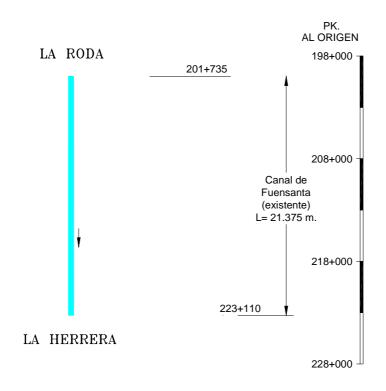


Figura 120. Conducción La Roda - La Herrera. Esquema en planta

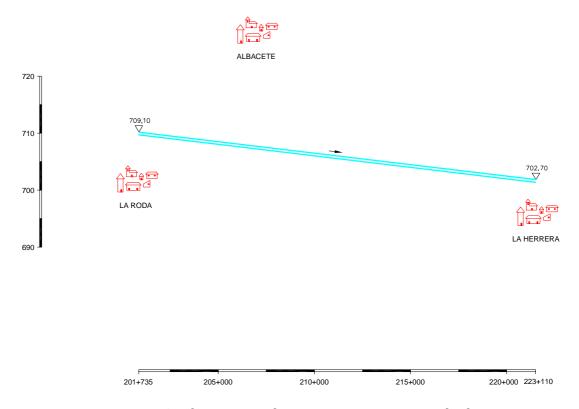


Figura 121. Conducción La Roda – La Herrera. Esquema en alzado

2.26. CONDUCCIÓN LA HERRERA-TALAVE

Corresponde al quinto y último de los tramos en los que se ha dividido el actual Acueducto Tajo–Segura. Al igual que en los casos anteriores, la infraestructura actual es suficiente para transportar un caudal de 33 m³/s, debiendo ampliarse para caudales mayores. Además, en este caso, también para cuadales mayores de dicho valor, se ha planteado la construcción de un salto hidroeléctrico, aprovechando las tres rápidas existentes a la salida del túnel de Talave. Con todo ello, la función de costes resultante es la que se muestra en la figura adjunta.

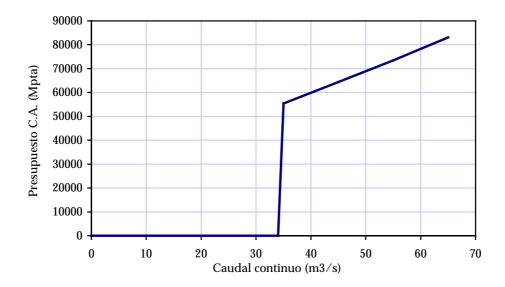


Figura 122. Conducción La Herrera-Talave. Función de coste

Respecto a los costes de circulación del tramo, habría que considerar únicamente el beneficio energético generado por la turbinación de las rápidas de Talave, cuyo coeficiente energético es de $-0.3 \, \text{kWh/m}^3$, con una tarifa eléctrica variable entre 7,6 y 13,5 pts/kWh, lo que supone unos costes totales de operación entre $-2.6 \, \text{y} -3.6 \, \text{pts/m}^3$. Las tablas adjuntas muestran el detalle de estas evaluaciones.

 Q	h _{func}	Nº	D	v	L	H _{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m ³ /s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
 10,0	0	0	0	0	0	149,0	0	0	0	0	0
34,0	0	0	0	0	0	149,0	0	0	0	0	0
35,0	24	2	2700	3,1	5129	149,0	14,7	134,3	41,44	-0,3	8,5
45,0	24	2	3000	3,2	5129	149,0	13,9	135,1	53,62	-0,3	7,6
55,0	24	2	3400	3,0	5129	149,0	10,7	138,3	67,11	-0,3	7,6
 65,0	24	2	3700	3,0	5129	149,0	9,5	139,5	79,99	-0,3	7,6

Tabla 114. Conducción La Herrera-Talave. Coeficientes energéticos en las turbinaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
10	0	0	0,0	0,0	0,0	0	0	0
34	0	0	0,0	0,0	0,0	0	0	0
35	-0,3	8,5	0,0	0,0	0,0	-0,3	8,5	-2,8
45	-0,3	7,6	0,0	0,0	0,0	-0,3	7,6	-2,5
55	-0,3	7,6	0,0	0,0	0,0	-0,3	7,6	-2,6
65	-0,3	7,6	0,0	0,0	0,0	-0,3	7,6	-2,6

Tabla 115. Conducción La Herrera - Talave. Costes totales de circulación

											a (n	n ³ /s)					
						1	0	3	4	3			5	5	5	6	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 TURBINACION DE TALAVE							<u>0</u>		0		8.676		10.948		13.165		15.328
Ud Central de Turbinación (q)				149	1	0	0	0	0	5.034	5.034	6.275	6.275	7.436	7.436	8.517	8.517
m Tubería forzada (q)	m Tubería forzada (q)									0,710	3.642	0,911	4.673	1,117	5.729	1,328	6.811
2,- <u>CANAL</u>					23.041		<u>0</u>		0		2.381		2.651		2.995		3.226
m Canal de Fuensanta (q)					23041	0,000	0	0,000	0	0,103	2.381	0,115	2.651	0,130	2.995	0,140	3.226
_																	
3 <u>TÚNELES</u>					32.834		0		0		25.545		28.927		32.341		36.347
m Túnel de Talave (q-35)					32834	0,000	0	0,000	0	0,778	25.545	0,881	28.927	0,985	32.341	1,107	36.347
PRESUPUESTO DE EJECUCION MATERIA	AL (N	A Pts.)					0		0		36.602		42.525		48.502		54.901
GASTOS GENERALES Y BENEFICIO IND	USTI	RIAL	(23%) (M Pts	s.):		0		0		8.418		9.781		11.155		12.627
	TOTAL (m Pts.)										45.020		52.306		59.657		67.528
	I.V.A. (16%) (M Pts.):										7.203		8.369		9.545		10.805
PRESUPUESTO DE EJECUCION POR CON	JTRA	ATA (I	M Pts.)	:			0		0		52.223		60.675		69.203		78.333
PRESUPUESTO CONOCIMIENTO DE LA	ADM	1INIS	TRAC	IÓN (M Pts.):		0		0		55.383		64.346		73.389		83.072

Tabla 116. Valoración de la conducción La Herrera-Talave

q Caudal continuo

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

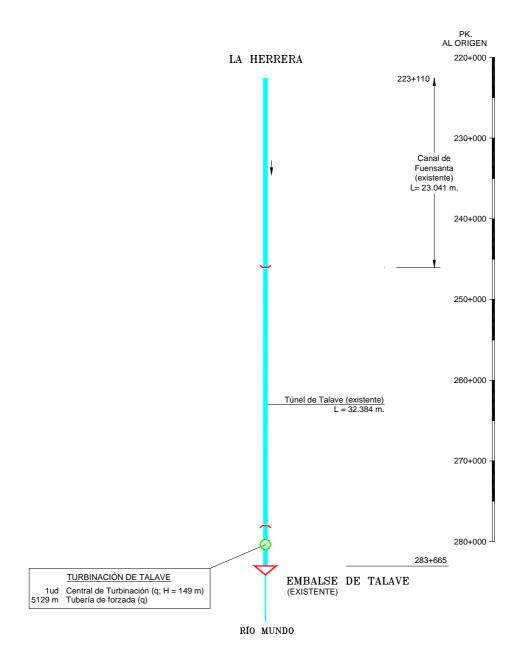


Figura 123. Conducción La Herrera-Talave. Esquema en planta

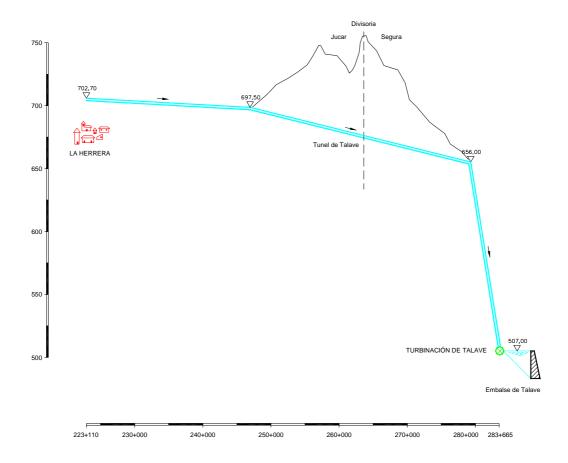


Figura 124. Conducción La Herrera-Talave. Esquema en alzado

2.27. CONDUCCIÓN TALAVE-ALTIPLANO

La función de costes del tramo es la que se muestra en la figura adjunta.

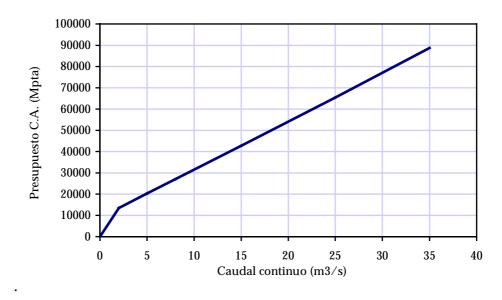


Figura 125. Conducción Talave-Altiplano. Función de coste

Respecto a sus costes de circulación, habría que considerar únicamente los debidos al consumo energético en la elevación de Jumilla, resultando un coeficiente energético en la conducción de media de 0,5 kWh/m³ con un precio de la energía variable entre 8 y 9 pts/kWh (en función del caudal circulante), lo que supone unos costes totales de operación entre 3,6 y 4,8 pts/m³, tal y como se muestra en las tablas adjuntas.

Q	h _{func}	Nº	D	v	L	H _{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m ³ /s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
2,0	20	1	1400	1,6	32341	110,0	58,1	168,1	4,7	0,5	9,0
5,0	20	1	2200	1,6	32341	110,0	32,6	142,6	9,9	0,5	9,0
8,0	20	1	2400	2,1	32341	110,0	52,5	162,5	18,0	0,5	8,0
15,0	20	1	3000	2,5	32341	110,0	56,1	166,1	34,5	0,5	8,0
25,0	20	1	3900	2,5	32341	110,0	38,5	148,5	51,3	0,5	8,0
35,0	20	1	4600	2,5	32341	110,0	31,2	141,2	68,4	0,5	8,0

Tabla 117. Conducción Talave-Altiplano. Coeficientes energéticos en las elevaciones

	Turbina	nciones	Elevac	iones	Varios	Tot	Total costes		
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación	
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	
2,0	0,0	0,0	0,5	9,0	0,0	0,5	9,0	4,8	
5,0	0,0	0,0	0,5	9,0	0,0	0,5	9,0	4,1	
8,0	0,0	0,0	0,5	8,0	0,0	0,5	8,0	4,2	
15,0	0,0	0,0	0,5	8,0	0,0	0,5	8,0	4,3	
25,0	0,0	0,0	0,5	8,0	0,0	0,5	8,0	3,8	
35,0	0,0	0,0	0,5	8,0	0,0	0,5	8,0	3,6	

Tabla 118. Conducción Talave-Altiplano. Costes totales de circulación

Г																	
						q (m³/s)											
						2	2	5		8		15		25		35	
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACION DE JUMILLA							3.533		4.937		6.269		9.276		13.520		17.752
Ud Estación de bombeo (0,55q)				110	1	771	771	1.204	1.204	1.566	1.566	2.309	2.309	3.255	3.255	4.123	4.123
m Impulsión (0,55q)					32341	0,068	2.199	0,098	3.169	0,128	4.140	0,198	6.404	0,300	9.702	0,404	13.066
Ud Depósito de Yecla			400000		1	563	563	563	563	563	563	563	563	563	563	563	563
2 TUBERÍAS EN CARGA					56.761		4.768		7.890		11.012		18.391		29.175		40.300
m Talave a Jumilla (q)					56761	0,084	4.768	0,139	7.890	0,194	11.012	0,324	18.391	0,514	29.175	0,710	40.300
3 DEPOSITOS DE REGULACION							<u>563</u>		<u>563</u>		<u>563</u>		563		<u>563</u>		563
· · · · · · · · · · · · · · · · · · ·			400000		١,	500	563		563		563		563		563		563
Ud Depósito de Jumilla	Ш		400000		1	563	303	563	203	563	303	563	303	563	303	563	303
							0.005		10.000		17.044		00 000		40.070		50.015
PRESUPUESTO DE EJECUCION MAT		8.865		13.390		17.844		28.230		43.259		58.615					
GASTOS GENERALES Y BENEFICIO		2.039		3.080	1	4.104		6.493		9.949		13.482					
		10.904		16.469		21.948		34.722		53.208		72.097					
		1.745		2.635		3.512		5.556		8.513		11.535					
PRESUPUESTO DE EJECUCION POR		12.648		19.105		25.459		40.278		61.721		83.632					
PRESUPUESTO CONOCIMIENTO D	ts.):	13.413		20.260		27.000		42.715		65.456		88.692					

Tabla 119. Valoración de la conducción Talave-Altiplano

q Caudal continuo

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

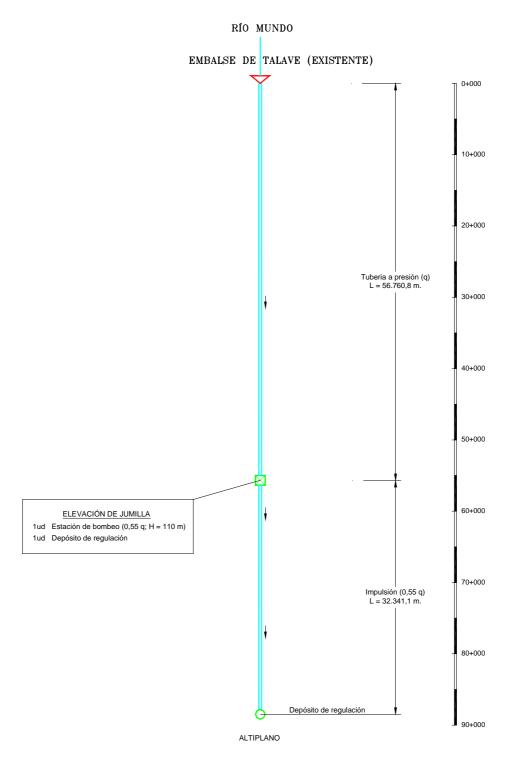


Figura 126. Conducción Talave-Altiplano. Esquema en planta

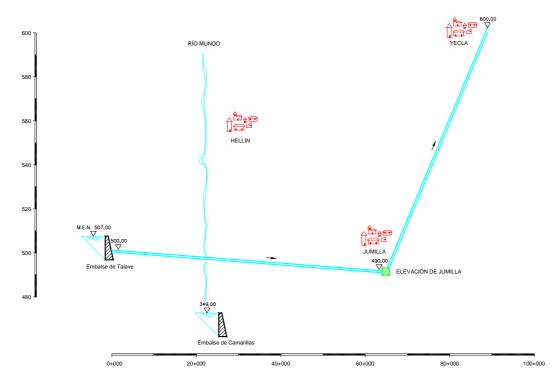


Figura 127. Conducción Talave-Altiplano. Esquema en alzado

2.28. CONDUCCIÓN VILLENA-ALTIPLANO

La función de costes de este tramo es la que se muestra en la figura adjunta.

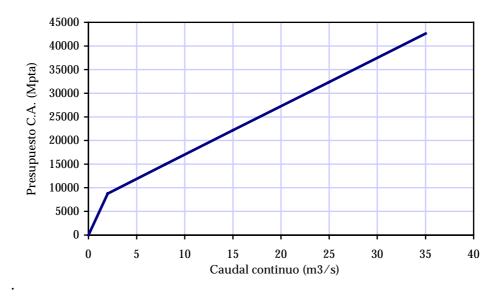


Figura 128. Conducción Villena-Altiplano. Función de coste

Respecto a los costes de circulación, habría que considerar únicamente los debidos al consumo energético en la elevación de Villena, resultando un coeficiente energético en la conducción de media de 0,4 kWh/m³ con un precio de la energía de 8 ó 9 pts/kWh, lo que supone unos costes totales de operación varaibles entre 3 y 4,5 pts/m³. Las tablas adjuntas muestran el detalle de estas estimaciones

	Q	h_{func}	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
	(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
-	2,0	20	1	1200	2,1	14255	100,0	58,3	158,3	4,4	0,4	9,0
	5,0	20	1	1900	2,1	14255	100,0	31,4	131,4	9,1	0,4	9,0
	8,0	20	1	2200	2,5	14255	100,0	36,8	136,8	15,1	0,4	8,0
	15,0	20	1	3000	2,5	14255	100,0	24,7	124,7	25,9	0,4	8,0
	25,0	20	1	3900	2,5	14255	100,0	16,9	116,9	40,5	0,4	8,0
	35,0	20	1	4600	2,5	14255	100,0	13,8	113,8	55,1	0,4	8,0

Tabla 120. Conducción VIllena-Altiplano. Coeficientes energéticos en las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
2,0	0,0	0,0	0,5	9,0	0,0	0,5	9,0	4,6
5,0	0,0	0,0	0,4	9,0	0,0	0,4	9,0	3,8
8,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,5
15,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,2
25,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,0
35,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	2,9

Tabla 121. Conducción Villena-Altiplano. Costes totales de circulación

												•					
											q (n						
						2	2	45	i .	8	3	1	5	2	5	3	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)		(Mpts/ud)		(Mpts/ud)		(Mpts/ud)		(Mpts/ud)		(Mpts/ud)	(M Pts)
1 ELEVACIÓN DE VILLENA							2.399		3.695		4.946		7.814		11.859		15.891
Ud Estación de bombeo (q)				100	1	639	639	1.150	1.150	1.617	1.617	2.632	2.632	3.969	3.969	5.206	5.206
m Villena a Yecla (q)					14255	0.084	1.197	0.139	1.981	0.194	2.765	0.324	4.619	0.514	7.327	0.710	10.121
Ud Depósito de regulación			400000		1	563	563	563	563	563	563	563	563	563	563	563	563
2 TUBERÍAS A PRESIÓN	24.339		1.689		2.465		3.265		5.140		7.846		10.596				
m Yecla a Pinillos (0,80q)					10084	0.077	776	0.120	1.210		1.654	0.268	2.703		4.225	0.573	5.778
m Pinillos a Jumilla (0,45q)					14255	0.064	912	0.088	1.254	0.113	1.611	0.171	2.438	0.254	3.621	0.338	4.818
m 1 mmos a Jumma (0,43q)					14233	0.004	312	0.000	1.234	0.113	1.011	0.171	2.430	0.234	3.021	0.556	4.010
3 DEPÓSITOS DE REGULACIÓN							1.690		1.690		1.690		1.690		1.690		1.690
Ud Depósito de Yecla			400000		1	563	563	563	563	563	563	563	563	563	563		563
Ud Depósito de Pinillos			400000		1	563	563	563	563		563	563	563	563	563	563	563
Ud Depósito de Jumilla			400000		1	563	563	563	563		563	563	563	563	563	563	563
Cu Deposito de Julillia			400000		1	303	303	303	303	303	303	303	303	303	303	303	303
			.														
PRESUPUESTO DE EJECUCION MATI	KIA	L (M	Pts.)				5.778		7.849		9.900		14.644		21.395		28.177
GASTOS GENERALES Y BENEFICIO I	NDU	STRI	AL (23%) (M	Pts.):		1.329		1.805		2.277		3.368		4.921		6.481
	TOTAL (M Pts.)								9.654	l	12.177		18.012	1	26.316		34.658
	I.V.A. (16%) (M Pts.):								1.545		1.948		2.882		4.211		5.545
PRESUPUESTO DE EJECUCION POR O	I.V.A. (16%) (M Pts.): ESUPUESTO DE EJECUCION POR CONTRATA (M Pts.):										14.126		20.893		30.526		40.203
PRESUPUESTO CONOCIMIENTO DE	LA A	DMI	NISTRA	CIÓ	N (M Pts	.):	8.743		11.876		14.980		22.158		32.373		42.635

Tabla 122. Valoración de la conducción Villena-Altiplano

q Caudal continuo
 A Altura de las presas
 L Longitud de coronación de las presas
 V Volúmenes de las balsas de modulación
 H Alturas geométricas de los bombeos o de las turbinaciones

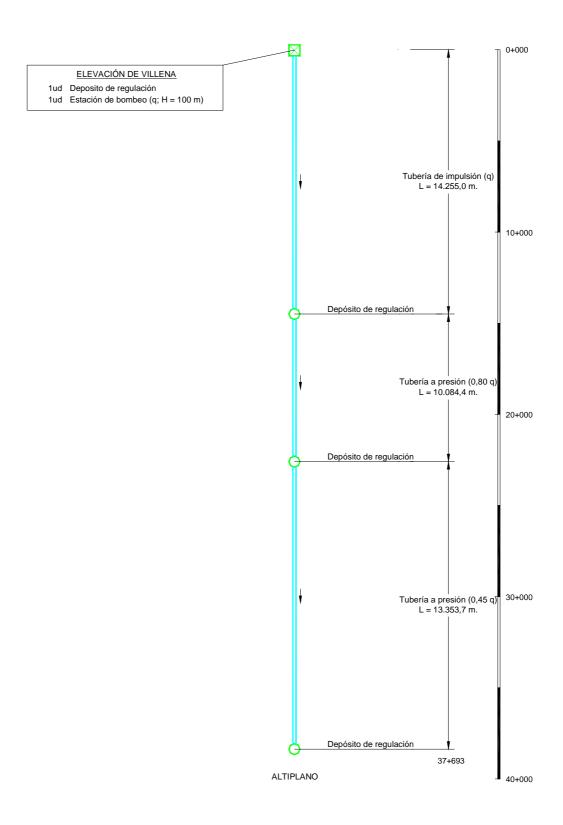


Figura 129. Conducción Villena-Altiplano. Esquema en planta

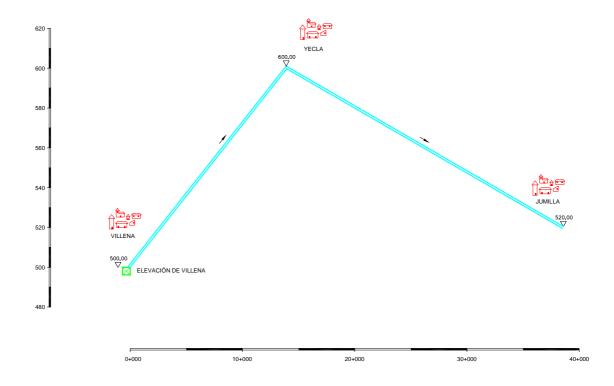


Figura 130. Conducción Villena-Altiplano. Esquema en alzado

2.29. CONDUCCIÓN TALAVE-CENAJO

La función de costes del tramo es la que mostrada en la figura adjunta. Los únicos costes imputables a este tramo son los del túnel entre los embalses de Talave y del Cenajo y los de la central hidroeléctrica prevista a la salida del túnel.

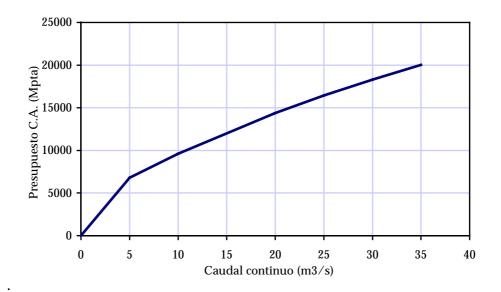


Figura 131. Conducción Talave-Cenajo. Función de coste

Respecto a los costes de circulación de este tramo, únicamente habría que considerar el beneficio energético producido en la turbinación de llegada al Cenajo, resultando un coeficiente energético de -0,2 kWh/m³ con una tarifa eléctrica de aplicación variable entre 11,8 y 13,7 pts/kWh, por lo que se obtienen unos costes totales de circulación en el tramo de unas -2,2 pts/m³. Las tablas adjuntas muestran el detalle de estas evaluaciones.

Q	h_{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
5,0	24	1	1700	2,2	194	70,0	1,2	68,8	3,03	-0,2	13,7
10,0	24	1	2500	2,0	194	70,0	0,6	69,4	6,12	-0,2	13,7
20,0	24	2	2500	2,0	194	70,0	0,6	69,4	12,24	-0,2	13,3
25,0	24	2	2800	2,0	194	70,0	0,5	69,5	15,32	-0,2	12,8
30,0	24	2	3000	2,1	194	70,0	0,5	69,5	18,38	-0,2	12,3
35,0	24	3	2700	2,0	194	70,0	0,6	69,4	21,43	-0,2	11,8

Tabla 123. Conducción Talave-Cenajo. Coeficientes energéticos en las turbinaciones

	Turbina	nciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	-0,2	13,7	0,0	0,0	0,0	-0,2	13,7	-2,3
10,0	-0,2	13,7	0,0	0,0	0,0	-0,2	13,7	-2,3
20,0	-0,2	13,3	0,0	0,0	0,0	-0,2	13,3	-2,3
25,0	-0,2	12,8	0,0	0,0	0,0	-0,2	12,8	-2,2
30,0	-0,2	12,3	0,0	0,0	0,0	-0,2	12,3	-2,1
35,0	-0,2	11,8	0,0	0,0	0,0	-0,2	11,8	-2,0

Tabla 124. Conducción Talave-Cenajo. Costes totales de circulación

											q (n	n ³ /s)					
							5	1	0	2	0	2	5	3	0	3	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 TUNEL							3.875		5.238		7.434		8.330		9.112		9.819
m Túnel Talave - Cenajo (q)					12621	0,307	3.875	0,415	5.238	0,589	7.434	0,660	8.330	0,722	9.112	0,778	9.819
2 TURBINACION DE CENAJO							620		1.118		2.075		2.535		2.982		3.417
Ud Central de Turbinación (q)				70	1	593	593	1.073	1.073	1.994	1.994	2.435	2.435	2.863	2.863	3.279	3.279
m Tubería forzada (q)					194	0,139	27	0,231	45	0,419	81	0,514	100	0,612	119	0,710	138
PRESUPUESTO DE EJECUCIÓN N	мат	ERI	AL (N	I Pts.)		4.495		6.355		9,509		10.865		12.095		13.236
			•				1.034		1.462		2.187		2.499		2.782		3.044
	STOS GENERALES Y BENEFICIO INDUSTRIAL (23: TOTAL (M Pts.)								7.817		11.696		13.364		14.876		16.280
		I.V.	A . (16	%) (N	A Pts.):		885		1.251		1.871		2.138		2.380		2.605
PRESUPUESTO DE EJECUCIÓN I	POR	CON	ITRA	TA (M Pts.):		6.413		9.068		13.567		15.502		17.256		18.885
PRESUPUESTO CONOCIMIENTO) DI	E LA	ADM	IINIS	STRACIO	ÓN (M I	6.801		9.616		14.388		16.440		18.300		20.027

Tabla 125. Valoración de la conducción Talave-Cenajo

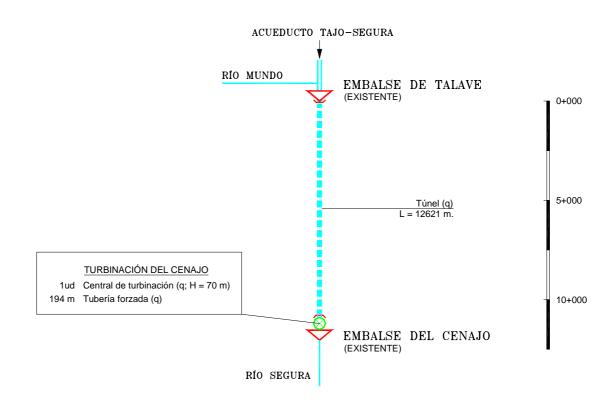


Figura 132. Conducción Talave-Cenajo. Esquema en planta

q Caudal contInuo

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

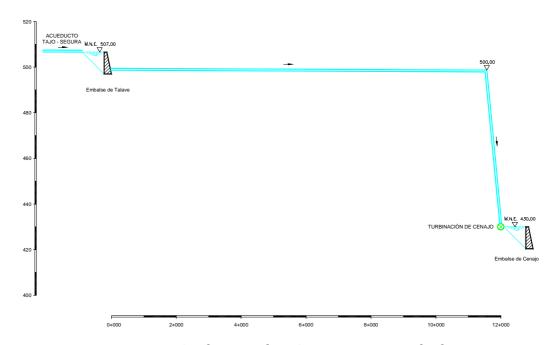


Figura 133. Conducción Talave-Cenajo. Esquema en alzado

2.30. CONDUCCIÓN CENAJO-RICOTE

Esta conducción es asimilable a un primer tramo del conocido desde antiguo como Canal Alto de la Margen Derecha. La función de costes del tramo es la que se muestra en la figura adjunta. Al no haber elevaciones, turbinaciones, ni situaciones singulares, son nulos los costes de circulación imputables a estos conceptos.

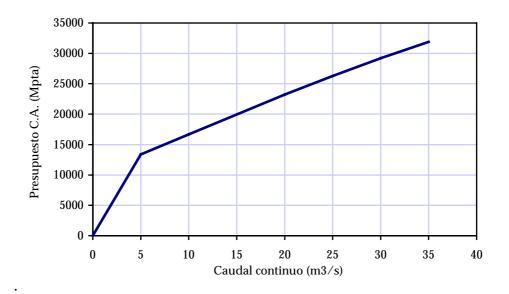


Figura 134. Conducción Cenajo-Ricote. Función de coste

											q (n	n ³ /s)					
							j .	1	0	2	0	2	5	3	0	3	5
	_					Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 CANAL					00.000		0.004		~ 400		0 7 40		40.704		44 000		40.040
					62.008		6.084		7.122		9.540		10.734	1	11.928		13.042
m Canal en tierra (q)					13528	0,085	1.150	0,097	1.312	0,124	1.677	0,136	1.840	., .	2.002	0,159	2.151
m Canal en tierra (q)					25111	0,085	2.134	0,097	2.436		3.114	0,136	3.415	., .	3.716	.,	3.993
m Canal en tierra (q)					6069	0,085	516	0,097	589		753	0,136	825		898	.,	965
m Canal en roca (q)					15521	0,132	2.049	0,161	2.499	0,231	3.585	0,269	4.175	.,	4.765	-,	5.324
m Canal en roca (q)					1779	0,132	235	0,161	286	0,231	411	0,269	479	0,307	546	0,343	610
a CHIONIEC																	
2 <u>SIFONES</u>					2.000		320		616		1.164		1.418		1.656		1.882
m Sifón de Benamar (q)					216	0,160	35	0,308	67	0,582	126	0,709	153	0,828	179	0,941	203
m Sifón de Calasparra (q)					795	0,160	127	0,308	245	0,582	463	0,709	564	0,828	658	0,941	748
m Sifón de Argós (q)					248	0,160	40	0,308	76	0,582	144	0,709	176	0,828	205	0,941	233
m Sifón de Quipar (q)					323	0,160	52	0,308	99	0,582	188	0,709	229	0,828	267	0,941	304
m Sifón de Benita (q)					418	0,160	67	0,308	129	0,582	243	0,709	296	0,828	346	0,941	393
3 <u>TÚNELES</u>					7.913		2.429		3.284		4.661		5.223		5.713		6.156
m Túnel de los Colorados (q)					7315	0,307	2.246	0,415	3.036	0,589	4.309	0,660	4.828	0,722	5.281	0,778	5.691
m Túnel de Ricote (q)					598	0,307	184	0,415	248	0,589	352	0,660	395	0,722	432	0,778	465
PRESUPUESTO DE EJECUCION N	MAT	ERI	AL (N	1 Pts)		8.833		11.022		15.365		17.375		19.297		21.081
GASTOS GRALES Y BENEFICIO	ESUPUESTO DE EJECUCION MATERIAL (M PIS.) ASTOS GRALES Y BENEFICIO INDUSTRIAL (23%) (M								2.535		3.534		3.996		4.438		4.849
	TOTAL (M Pts.)										18.899		21.371		23.735		25.929
	I.V.A. (16%) (M Pts										3.024		3.419		3.798		4.149
PPTO DE EJECUCION POR CONT	I.V.A. (16%) (M Pt O DE EJECUCION POR CONTRATA (M Pts.):										21.923		24.790		27.533		30.078
PPTO CONOCIMIENTO DE LA A	DM	ÓN.	(M P	ts.):			13.366		16.677		23.249		26.290		29.199		31.898

q Caudal continuo

Tabla 126. Valoración de la conducción Cenajo-Ricote

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

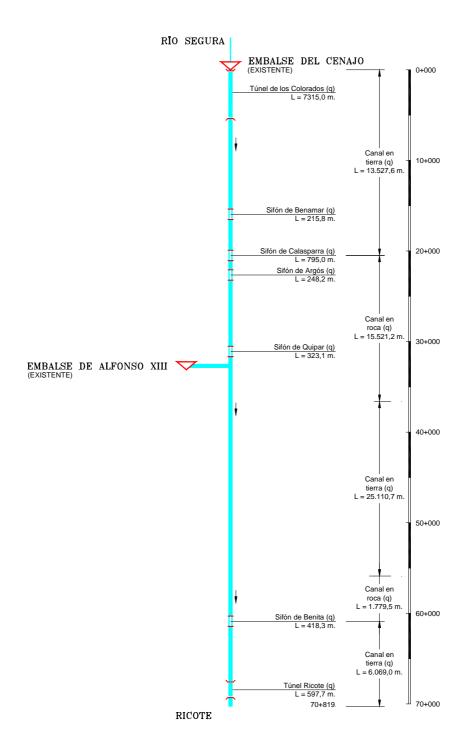


Figura 135. Conducción Cenajo-Ricote. Esquema en planta

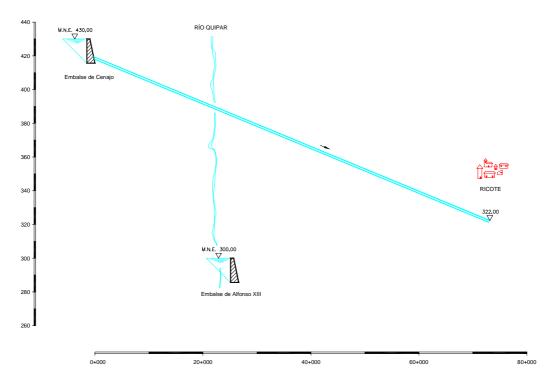


Figura 136. Conducción Cenajo-Ricote. Esquema en alzado

2.31. CONDUCCIÓN RICOTE-OJÓS

La función de costes de este tramo es la mostrada en la figura adjunta. Los únicos costes imputables al tramo son, básicamente, los de la central hidroeléctrica prevista en Ojós.

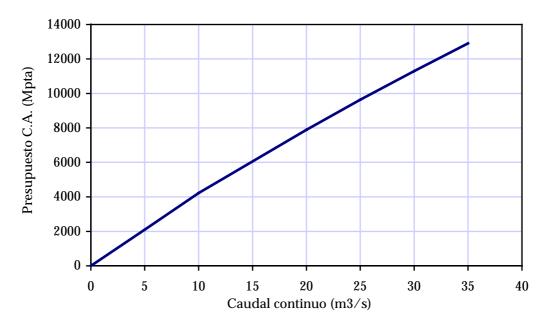


Figura 137. Conducción Ricote-Ojós. Función de coste

Respecto a sus costes de circulación, únicamente habría que considerar el beneficio energético producido en la turbinación de Ojós, resultando un coeficiente energético de -0,4 kWh/m³ con una tarifa eléctrica de aplicación variable entre 7,6 y 13,7 pts/kWh, por lo que, adoptando un precio medio de la energía en el tramo de 10 pts/kWh, resultan unos .costes totales de operación en el tramo entre -5,9 y -3,6 pts/m³. Las tablas adjuntas muestran el detalle de tales estimaciones.

	Q	h _{func}	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(1	m ³ /s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
	5,0	24	2	1000	3,2	2465	185,0	28,9	156,1	6,88	-0,4	13,7
	10,0	24	2	1400	3,2	2465	185,0	19,2	165,8	14,62	-0,4	12,9
	20,0	24	2	2000	3,2	2465	185,0	11,5	173,5	30,61	-0,4	10,3
	25,0	24	2	2300	3,0	2465	185,0	8,5	176,5	38,92	-0,4	8,9
	30,0	24	2	2500	3,1	2465	185,0	7,9	177,1	46,87	-0,4	7,6
	35,0	24	2	2700	3,1	2465	185,0	7,1	177,9	54,92	-0,4	7,6

Tabla 127. Conducción Ricote-Ojós. Coeficientes energéticos en las turbinaciones

	Turbina	nciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m ³ /s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	-0,4	13,7	0,0	0,0	0,0	-0,4	13,7	-5,2
10,0	-0,4	12,9	0,0	0,0	0,0	-0,4	12,9	-5,3
20,0	-0,4	10,3	0,0	0,0	0,0	-0,4	10,3	-4,4
25,0	-0,4	8,9	0,0	0,0	0,0	-0,4	8,9	-3,9
30,0	-0,4	7,6	0,0	0,0	0,0	-0,4	7,6	-3,3
35,0	-0,4	7,6	0,0	0,0	0,0	-0,4	7,6	-3,3

Tabla 128. Conducción Ricote-Ojós. Costes totales de circulación

											q (n	n ³ /s)					
							ĭ	1	0	2	0	2	5	3	0	3	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 TURBINACION DE OJOS							994		1.803		3.354		4.097		4.819		5.518
Ud Central de Turbinación (q)				185	1	994	994	1.803	1.803	3.354	3.354	4.097	4.097	4.819	4.819	5.518	5.518
2 TUBERÍA A PRESIÓN							394		986		1.862		2.269		2.650		3.011
m Tubería a presión (q)					2465	0,160	394	0,308	986	0,582	1.862	0,709	2.269	0,828	2.650	0,941	3.011
PRESUPUESTO DE EJECUCION M	1AT	ERIA	L (M	Pts.)			1.389		2.788		5.216		6.366		7.468		8.529
GASTOS GENERALES Y BENEFIC	CIOI	IND	JSTR	IAL	(23%) (M		319		641		1.200		1.464		1.718		1.962
	TOTAL (M Pts.)						1.708		3.430		6.416		7.830		9.186		10.491
	I.V.A. (16%) (M Pt								549		1.027		1.253		1.470		1.679
PRESUPUESTO DE EJECUCION P	SUPUESTO DE EJECUCION POR CONTRATA (M P										7.443		9.083		10.656		12.170
PRESUPUESTO CONOCIMIENTO) DE	LA A	ADM	INIS	TRACIÓ	N (M P	2.101		4.219		7.893		9.632		11.300		12.906

Tabla 129. Valoración de la conducción Ricote-Ojós

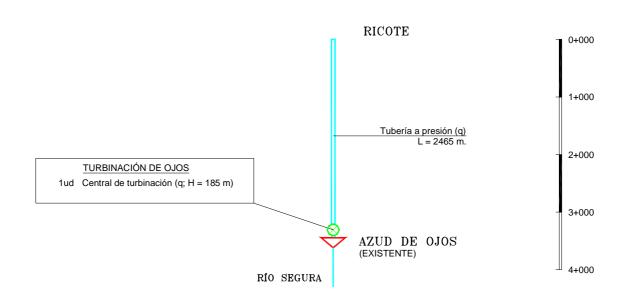


Figura 138. Conducción Ricote-Ojós. Esquema en planta

q Caudal contínuo

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

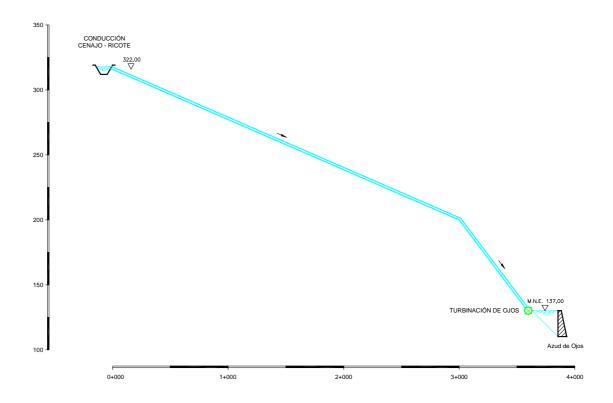


Figura 139. Conducción Ricote-Ojós. Esquema en alzado

2.32. CONDUCCIÓN RICOTE-ALGECIRAS

Esta conducción es asimilable a un segundo tramo del conocido desde antiguo como Canal Alto de la Margen Derecha. La función de costes del tramo es la que se muestra en la figura adjunta. Al no haber elevaciones ni situaciones singulares, son nulos los costes de circulación imputables a estos conceptos.

Como puede verse en las figura siguientes, esta conducción termina con un salto hidroeléctrico a través del cual se vierte al embalse de Algeciras. Sin embargo, tal como se ha señalado en el Anejo de descripción de transferencias y en el de afecciones ambientales, la tubería forzada correspondiente y las líneas eléctrcias atraviesan el perímetro del espacio natural protegido de los Barrancos de Gebar. Por ello, en la valoración que se incluye a continuación se contempla la inversión necesaria para construir el salto, pero no el beneficio por turbinación, que minoraría el coste unitario del agua en destino, con el fin de quedar del lado de la seguridad en el caso de que finalmente no fuese posible materializar el aprovechamiento hidroelécrico.

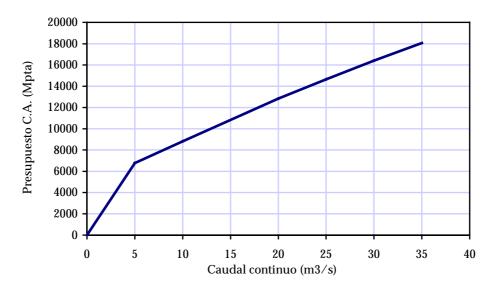


Figura 140. Conducción Ricote-Algeciras. Función de coste

											q (n	n ³ /s)					
						;	5	1	0	2	0	2	5	3	0	3	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 TURBINACIÓN ALGECIRAS							443		807		1.514		1.856		2.193		2.522
Ud Central de turbinación (g)				38	1	352	352	656	656	1.240	1.240		1.520		1.793		2.057
m Tubería forzada (q)				00	654	0.139	91	0,231	151		274		336		400		464
						*,		0,		.,		*,***		.,		*,	
2 CANAL					35.259		2.997		3.420		4.372		4.795		5.218		5.606
m Canal en tierra (q)					35259	0,085	2.997	0,097	3.420	0,124	4.372	0,136	4.795	0,148	5.218	0,159	5.606
-																	
3 <u>SIFONES</u>					2.195		351		676		1.277		1.556		1.817		2.065
m Sifón de Arco (q)					325	0,160	52	0,308	100	0,582	189	0,709	230	0,828	269	0,941	306
m Sifón de Mula (q)					1205	0,160	193	0,308	371	0,582	701	0,709	854	0,828	998	0,941	1.134
m Sifón de Fuente Lebrilla (q)					665	0,160	106	0,308	205	0,582	387	0,709	471	0,828	551	0,941	626
4 <u>TUNELES</u>					2.235		686		928		1.316		1.475		<u>1.614</u>		1.739
m Túnel del Cajar (q)					524	0,307	161	0,415	217	0,589	309	0,660	346	0,722	378	0,778	408
m Túnel de Mayés (q)					1711	0,307	525	0,415	710	0,589	1.008	0,660	1.129	0,722	1.235	0,778	1.331
PRESUPUESTO DE EJECUCION N			,		,		4.477 1.030		5.830		8.480		9.683		10.843		11.932
GASTOS GENERALES Y BENEFIC	ASTOS GENERALES Y BENEFICIO INDUSTRIAL (23%								1.341		1.950		2.227		2.494		2.744
	TOTAL (M Pts.)										10.430		11.910		13.336		14.677
	I.V.A. (16%) (M P										1.669		1.906		2.134		2.348
PPTO DE EJECUCION POR CONT	ΓRA	TA (M Pts	:.):			6.388		8.319		12.099		13.816		15.470		17.025
PPTO CONOCIMIENTO DE LA A	DM	ON.	(M P	ts.):			6.775		8.822		12.831		14.652		16.406		18.055

q Caudal contInuo

Tabla 130. Valoración de la conducción Ricote-Algeciras

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

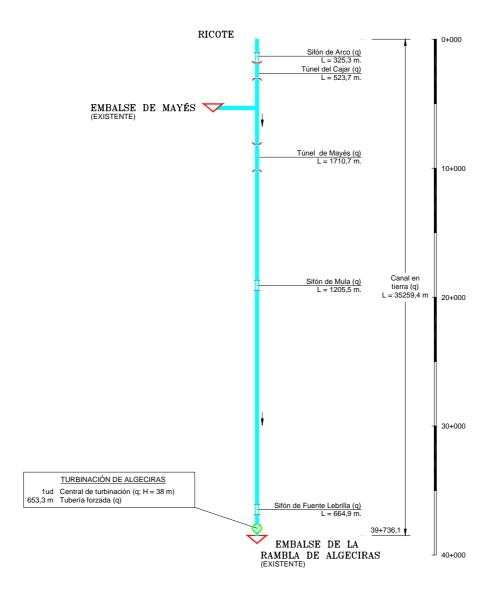


Figura 141. Conducción Ricote-Algeciras. Esquema en planta

Figura 142. Conducción Ricote-Algeciras. Esquema en alzado

2.33. CONDUCCIÓN OJÓS-ALGECIRAS

Constituye parte de uno de los ramales del postrasvase Tajo-Segura (Canal de la Margen Derecha), por lo que se trata de una conducción existente en la actualidad. Básicamente, consiste en un canal en lámina libre, con diversos acueductos y sifones intercalados en su trazado, que cuenta con una importante elevación (Ojós, de 146 m) y que finaliza en la elevación de Alhama (de 115 m, valorada en el tramo siguiente Algeciras-Almanzora). Su capacidad máxima de transporte es, aproximadamente, de 10 m³/s en caudal contínuo, excepto la elevación de Ojós, prevista para funcionar en 10 horas con un caudal de diseño de 25 m³/s, y regular los bombeos en el depósito del Mayés. Para la valoración de la conducción se han seguido los siguientes criterios:

- para caudales circulantes menores de 10 m³/s se supone coste nulo.
- para caudales entre 10 y 12 m³/s habría que recrecer el actual canal, pero se supone que los bombeos, sifones, acueductos e impulsiones no requieren ampliación debido a los resguardos que este tipo de obras suelen presentar.
- para caudales mayores de 12 m³/s pero menores de 25 m³/s, además de recrecer el canal, habría que ampliar los sifones, los acueductos y las impulsiones hasta que tuvieran capacidad para el nuevo caudal de diseño de la conducción.

- para caudales mayores de 25 m³/s, además de todo lo anterior, habría que ampliar la estación de bombeo de Ojós.

Como se explicó, la valoración del recrecimiento de un canal se ha supuesto equivalente a la mitad del importe que supondría la ejecución de dicho canal de nueva construcción.

La ampliación de los elementos singulares de la conducción (estaciones de bombeo, sifones, túneles y acueductos) por encima de sus caudales de diseño se ha valorado suponiendo se construyera otra obra hidráulica similar, con capacidad igual a la diferencia entre el nuevo caudal de diseño y el de la obra actual.

Con todo ello, la función de costes del tramo (Presupuesto para Conocimiento de la Administración según el caudal continuo) es la que se muestra en la figura adjunta. Como puede verse, dicha función de costes queda claramente dividida en diversos tramos, en función del grado de ampliación que requiera la conducción actual, conforme a los criterios indicados anteriormente.

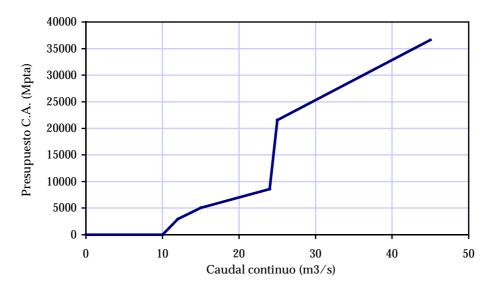


Figura 143. Conducción Ojós-Algeciras. Función de coste.

Respecto a los costes de circulación de este tramo, habría que considerar únicamente los debidos al consumo energético en la elevación de Ojós, estimados en 3,5 pts/m³, los cuáles, en el caso de que el caudal circulante sea menor de 25 m³/s habría que considerarlos como el pago por el uso de una instalación existente, y si el caudal fuera mayor de 25 m³/s como los resultantes en una conducción que tuviera un coeficiente energético de 0,45kWh/m³ con un precio de la energía de 8 pts/kWh. El detalle de todo ello puede verse reflejado en las tablas adjuntas

Q	h _{func}	Nº	D	V	L	H _{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
10,0	24	1	2200	2,6	0	0,0	0,0	0,0	0,0	0,0	0,0
12,0	24	1	2400	2,7	0	0,0	0,0	0,0	0,0	0,0	0,0
15,0	24	1	2700	2,6	0	0,0	0,0	0,0	0,0	0,0	0,0
24,0	24	1	3400	2,6	0	0,0	0,0	0,0	0,0	0,0	0,0
25,0	24	1	3500	2,6	425	146,0	0,6	146,6	42,3	0,5	8,0
45,0	24	1	4700	2,6	425	146,0	0,4	146,4	76,0	0,5	8,0

Tabla 131. Conducción Ojós-Algeciras. Coeficientes energéticos en la elevación de Ojós

	Turbina	nciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
10,0	0,0	0,0	0,0	0,0	3,5	0,0	3,5	3,5
12,0	0,0	0,0	0,0	0,0	3,5	0,0	3,5	3,5
15,0	0,0	0,0	0,0	0,0	3,5	0,0	3,5	3,5
24,0	0,0	0,0	0,0	0,0	3,5	0,0	3,5	3,5
25,0	0,0	0,0	0,5	8,0	0,0	0,5	8,0	3,8
45,0	0,0	0,0	0,5	8,0	0,0	0,5	8,0	3,8

Tabla 132. Conducción Ojós-Algeciras. Costes totales de circulación

										q (m ³ /s)					
					1	0	1	2	1	5	2	4	2	5	4	5
					Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	V	Н	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACION DE OJOS						<u>0</u>		<u>0</u>		<u>0</u>		<u>0</u>		8.333		<u>14.004</u>
Ud Estación de bombeo (2,5 q-20)				146	0	0	0	0	0	0	0	0	7.531	7.531	12.892	12.892
m Tubería de impulsión (2,5q-20)					0	0	0	0	0	0	0	0	0,860	366	1,934	822
m Canal en tierra (2,5q-20)					0	0	0	0	0	0	0	0	0,112	436	0,075	290
m Túnel (2,5q-20)					0	0	0	0	0	0	0	0	0,856	2.009	1,680	3.943
2 <u>CANAL</u>						<u>0</u>		1.948		2.099		2.534		2.572		3.347
m Canal en tierra (q)					0	0	0,067	1.948	0,072	2.099	0,087	2.534	0,088	2.572	0,115	3.347
3 <u>SIFONES</u>						<u>0</u>		<u>0</u>		1.052		2.769		2.946		6.189
m Sifón Río Mula (q-10)					0	0	0	0	0,160	464	0,421	1.220	0,448	1.299	0,941	2.728
m Sifón Rambla Salada (q-10)					0	0	0	0	0,160	424	0,421	1.115	0,448	1.186	0,941	2.492
m Sifón Librilla (q-10)					0	0	0	0	0,160	165	0,421	434	0,448	461	0,941	969
4 ACUEDUCTOS						<u>0</u>		<u>0</u>		<u>193</u>		<u>360</u>		377		<u>665</u>
m Acueducto los Guillermos (q-10))				0	0	0	0	0,166	18	0,310	33	0,325	35	0,573	61
m Acueducto de La Zarza (q-10)					0	0	0	0	0,166	23	0,310	43	0,325	46	0,573	80
m Acueducto Belén (q-10)					0	0	0	0	0,166	23	0,310	44	0,325	46	0,573	81
m Acueducto Casiano (q-10)					0	0	0	0	0,166	23	0,310	42	0,325	45	0,573	79
m Acueducto Pereton (q-10)					0	0	0	0	0,166	20	0,310	37	0,325	39	0,573	68
m Acueducto Algeciras (q-10)					0	0	0	0	0,166	86	0,310	160	0,325	168	0,573	296
PRESUPUESTO DE EJECUCION MA	TE	RIA	L (M	Pts.)		0		1.948		3.344		5.663		14.229		24.206
GASTOS GENERALES Y BENEFICIO	GASTOS GENERALES Y BENEFICIO INDUSTRIAL (2							448		769		1.302		3.273		5.567
	TOTAL (M Pts							2.396		4.113		6.965		17.501		29.773
	I.V.A. (16%) (N							383		658		1.114		2.800		4.764
PRESUPUESTO DE EJECUCION POI	RESUPUESTO DE EJECUCION POR CONTRATA (M					0		2.779		4.771		8.080		20.302		34.537
PRESUPUESTO CONOCIMIENTO DE LA ADMINISTRACIÓ						0		2.947		5.060		8.569		21.530		36.626
I MESSI CESIO CONOCIMIENTO E			.17171	4101	MACIO	U		₩. 01 1		3.000		0.000		~1.000		00.020

q Caudal continuo

Tabla 133. Valoración de la conducción Ojós-Algeciras

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

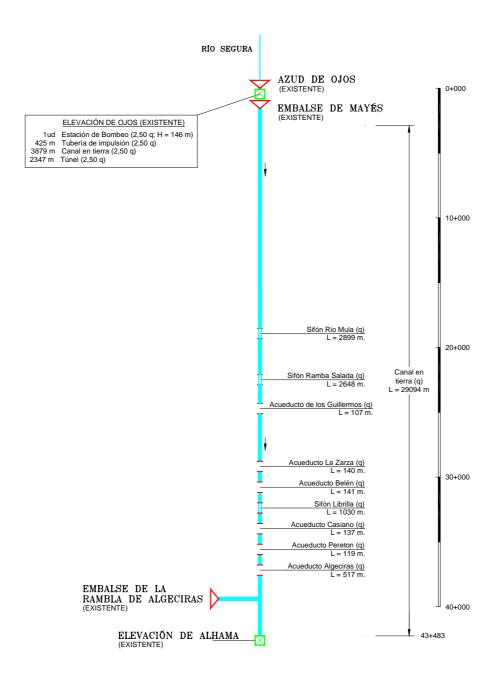


Figura 144. Conducción Ojós-Algeciras. Esquema en planta

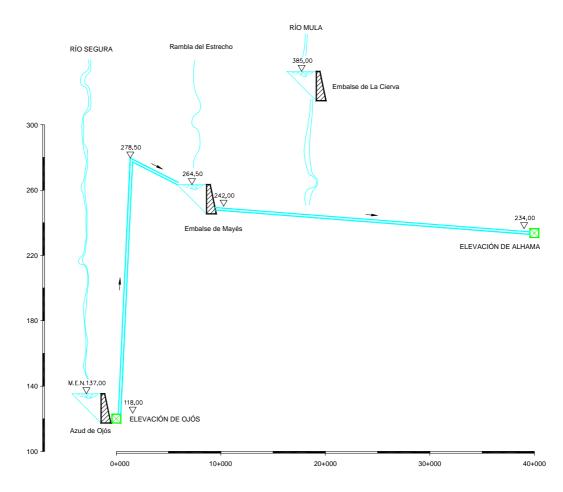


Figura 145. Conducción Ojós-Algeciras. Esquema en alzado

2.34. CONDUCCIÓN ALGECIRAS-ALMANZORA

Al igual que la anterior, forma parte de uno de los ramales del postrasvase Tajo-Segura (Canal de la Margen Derecha), por lo que se trata de una conducción existente en la actualidad. Básicamente, consiste en una conducción en canal en lámina libre, con una importante elevación en cabecera (Alhama, 115 metros) y con diversos acueductos, sifones y túneles intercalados en su trazado, cuya capacidad máxima de transporte es de unos 10 m³/s en cabecera y de 7 m³/s en cola, en el tramo de Almería. Para su valoración se han seguido los siguientes criterios:

- para caudales menores de 10 m³/s se supone coste nulo
- para caudales entre 10 y 12 m³/s habría que recrecer el actual canal, pero puede suponerse que los sifones, acueductos y túneles no requieren recrecimiento.
- para caudales mayores de 12 m³/s, además de recrecer el canal, habría que ampliar la elevación de Alhama y los sifones, los acueductos y los túneles.

Los criterios seguidos en la estimación de costes son los ya expuestos en casos anteriores.

70000 60000 50000 40000 20000 10000 0 10 20 30 40 50

Finalmente, la función de costes del tramo es la que se muestra en la figura adjunta.

Figura 146. Conducción Algeciras-Almanzora. Función de coste

Caudal continuo (m3/s)

Respecto a los costes de circulación de este tramo, habría que considerar únicamente los debidos al consumo energético en la elevación de Alhama, estimados en 3,0 pts/m³, los cuáles, en el caso de que el caudal circulante sea menor de 15 m³/s habría que considerarlos como el pago por el uso de una instalación existente, y si el caudal fuera mayor de 15 m³/s como los resultantes en una conducción que tuviera un coeficiente energético de 0,4kWh/m³ con un precio de la energía de 8 pts/kWh. El detalle de todo ello puede verse reflecjado en las tablas adjuntas

-	Q	h _{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
	(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
-	10,0	0	0	0	0,0	0	0,0	0,0	0,0	0,0	0,0	0,0
	12,0	0	0	0	0,0	0	0,0	0,0	0,0	0,0	0,0	0,0
	15,0	24	1	2700	2,6	518	115,0	1,1	116,1	20,1	0,4	8,0
	24,0	24	1	3100	2,6	518	115,0	0,9	115,9	26,7	0,4	8,0
	25,0	24	1	3900	2,5	518	115,0	0,6	115,6	40,0	0,4	8,0
	45,0	24	1	4700	2,6	518	115,0	0,5	115,5	59,9	0,4	8,0

Tabla 134. Conducción Algeciras-Almanzora. Coeficientes energéticos en la elevación de Alhama

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
10,0	0,0	0,0	0,0	0,0	3,0	0,0	3,0	3,0
12,0	0,0	0,0	0,0	0,0	3,0	0,0	3,0	3,0
15,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,0
24,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,0
25,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,0
45,0	0,0	0,0	0,4	8,0	0,0	0,4	8,0	3,0

Tabla 135. Conducción Algeciras-Almanzora. Costes totales de circulación

						q (m³/s)											
						1	0	1	2	1	5	2	0	30)	4	5
						Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	A	L	v	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 ELEVACIÓN DE ALHAMA							0		<u>0</u>		969		1.799		3.389		<u>5.605</u>
Ud Estación de bombeo (q-10)				115	1	0	0	0	0	897	897	1.680	1.680	3.172	3.172	5.237	5.237
m Tubería de impulsión (q-10)					518	0	0	0	0	0,139	72	0,231	120	0,419	217	0,710	368
2 <u>CANAL</u>					<u>47.660</u>		<u>0</u>		<u>3.116</u>		3.364		<u>3.766</u>		<u>4.519</u>		<u>5.446</u>
m Canal en tierra Alhama-Lorca(q)				33246	0	0	0,067	2.226	0,072	2.399	0,081	2.680	0,096	3.198	0,115	3.825
m Canal en tierra de Almería(q-3)					14414	0	0	0,062	890	0,067	965	0,075	1.087	0,092	1.321	0,112	1.621
3 TUNELES					34.124		0		<u>0</u>		15.662		18.643		23.491		<u>29.134</u>
m Túnel nº1 (q)					504	0	0	0,000	0	0,508	256	0,589	297	0,722	364	0,881	444
m Túnel nº2 (q)					2632	0	0	0,000	0	0,508	1.337	0,589	1.550	0,722	1.900	0,881	2.319
m Falso túnel (q-3)					26286	0	0	0,000	0	0,454	11.934	0,542	14.247	0,685	18.006	0,851	22.369
m Túnel Saltador (q-3)					4702	0	0	0,000	0	0,454	2.135	0,542	2.548	0,685	3.221	0,851	4.001
4 SIFONES					1.583		0		<u>0</u>		<u>643</u>		<u>858</u>		1.254		1.768
m Sifón de Zarcico (q)					188	0	0	0,000	0	0,448	84	0,582	109	0,828	156	1,146	215
m Sifón de Lorca (q)					601	0	0	0,000	0	0,448	269	0,582	350	0,828	498	1,146	689
m Sifón de Almendricos (q-3)					794	0	0	0,000	0	0,365	290	0,502	399	0,757	601	1,088	864
-																	
5 ACUEDUCTOS					903		0		<u>0</u>		287		350		463		603
m Acueducto de Lebor (q)					200	0	0	0,000	0	0,325	65	0,394	79	0,518	104	0,672	134
m Acueducto de Yesos (q)					554	0	0	0,000	0	0,325	180		218	0,518	287	0,672	372
m Acueducto Zarcico (q)					0	0	0	0,000	0	0,325	0	0,000	0	0,518	0	0,672	0
m Acueducto de la Noria (q-3)					149	0	0	0,000	0	0,280	42	0,353	53	0,483	72	0,644	96
PRESUPUESTO DE EJECUCION MA	TEI	RIA	L (M	Pts.)			0		3.116		20.924		25.416		33.117		42.555
GASTOS GENERALES Y BENEFICIO INDUSTRIAL (23%) (M							0		717		4.813		5.846		7.617		9.788
TOTAL (M Pts.)							0		3.833		25.737		31.261		40.733		52.342
I.V.A. (16%) (M Pts.):							0		613		4.118		5.002		6.517		8.375
PRESUPUESTO DE EJECUCION POI	PRESUPUESTO DE EJECUCION POR CONTRATA (M Pts.):						0		4.446		29.854		36.263		47.251		60.717
PRESUPUESTO CONOCIMIENTO D	E L	ΑA	DM	INIST	RACIÓ	N (M Pt	0		4.715		31.661		38.457		50.109		64.390
								ı		l				1	l		

q Caudal continuo

Tabla 136. Valoración de la conducción Algeciras-Almanzora

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

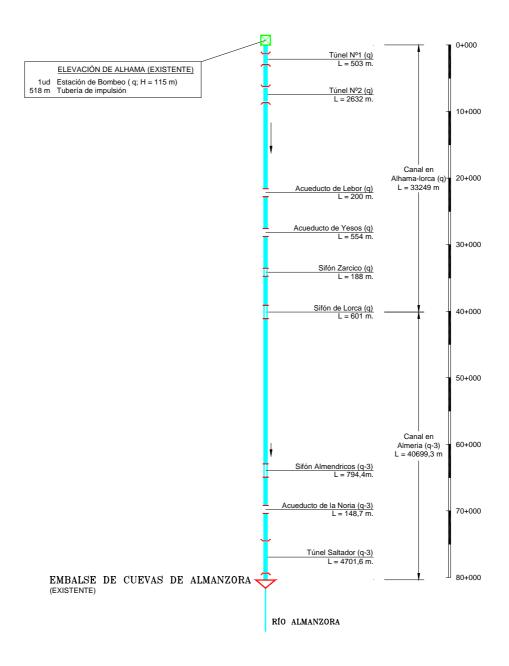


Figura 147. Conducción Algeciras-Almanzora. Esquema en planta

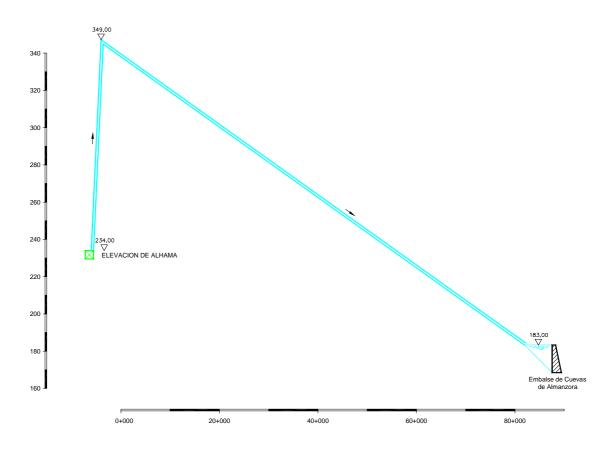


Figura 148. Conducción Algeciras-Almanzora. Esquema en alzado

2.35. CONDUCCIÓN ALMANZORA-ALMERÍA

La función de costes de la conducción Almanzora-Almería es la que se muestra en la figura adjunta, obtenida a partir de los datos facilitados por Acusur.

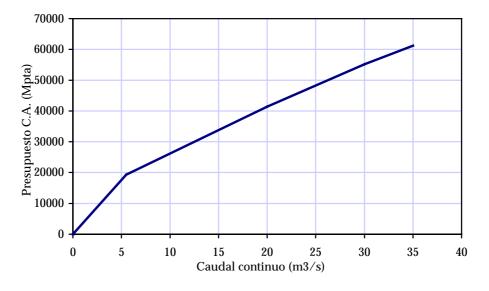


Figura 149. Conducción Almanzora-Almería. Función de coste

2.36. CONDUCCIÓN BAJO SEGURA-CARTAGENA LITORAL

Al igual que otras conducciones anteriores, forma parte de uno de los ramales del postrasvase Tajo-Segura (Canal de la Margen Derecha), por lo que se trata de una conducción existente en la actualidad. Básicamente, consiste en una conducción en canal en lámina libre, con dos túneles intercalados en su trazado, cuya capacidad máxima de transporte es variable entre unos 20 m³/s en cabecera y unos 5 m³/s en cola. Para su valoración se han seguido los mismos criterios que en casos anteriores, esto es:

- para caudales menores de 20 m³/s en cabecera, se supone coste nulo
- para caudales entre 20 y 22 m³/s habría que recrecer el actual canal, pero no los túneles.
- para caudales mayores de 22 m³/s, además de recrecer el canal, habría que ampliar los túneles.

Los criterios de valoración son los ya expuestos para otros tramos similares.

La función de costes del tramo finalmente obtenida es la que se muestra en la figura adjunta.

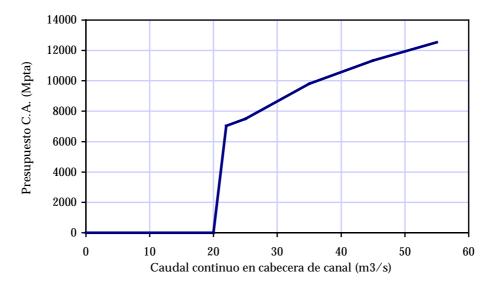


Figura 150. Conducción Bajo Segura-Cartagena Litoral. Función de coste

Respecto a los costes de circulación de este tramo, se suponen nulos al no haber en el mismo ni elevaciones ni turbinaciones ni elementos singulares.

											q (m³/s)					
						2	0	2	2	2		3	5	4	5	5	5
	_					Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe	Importe
	Α	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial	unitario	parcial
	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
1 CANAL					67.128		<u>0</u>		4.648		4.963		6.090		7.039		7.779
m Canal en tierra (q)					6785	0	0	0,084	569	0,088	600	0,103	701	0,115	781	0,122	825
m Canal en tierra (q-7)					36470	0	0	0,072	2.631	0,077	2.797	0,094	3.414	0,107	3.911	0,118	4.291
m Canal en tierra (q-13)					15645	0	0	0,062	966	0,067	1.047	0,084	1.312	0,099	1.556	0,112	1.759
m Canal en tierra (q-15)					8228	0	0	0,059	481	0,063	519	0,081	663	0,096	792	0,110	904
2 TUNELES					956		<u>0</u>		<u>0</u>		<u>0</u>		388		<u>450</u>		507
m Túnel (q-7)					556	0	0	0	0	0	0	0,698	388	0,810	450	0,911	507
PRESUPUESTO DE EJECUCION MA	TE	RIA	L (M	Pts.)			0		4.648		4.963		6.478		7.490		8.285
GASTOS GENERALES Y BENEFICIO	O IN	NDU	JSTF	IAL (2	3%) (M I		0		1.069		1.142		1.490		1.723		1.906
	TOTAL (M Pts.)								5.717		6.105		7.968		9.212		10.191
	A Pts.):		0		915		977		1.275		1.474		1.630				
PRESUPUESTO DE EJECUCION PO	RESUPUESTO DE EJECUCION POR CONTRATA (M Pts.):								6.631		7.082		9.243		10.686		11.821
PRESUPUESTO CONOCIMIENTO I	RACIÓN	(M Pts	0		7.032		7.510		9.802		11.333		12.536				

q Caudal continuo

Tabla 137. Valoración de la conducción Bajo Segura-Cartagena Litoral

A Altura de las presas

L Longitud de coronación de las presas

V Volúmenes de las balsas de modulación

H Alturas geométricas de los bombeos o de las turbinaciones

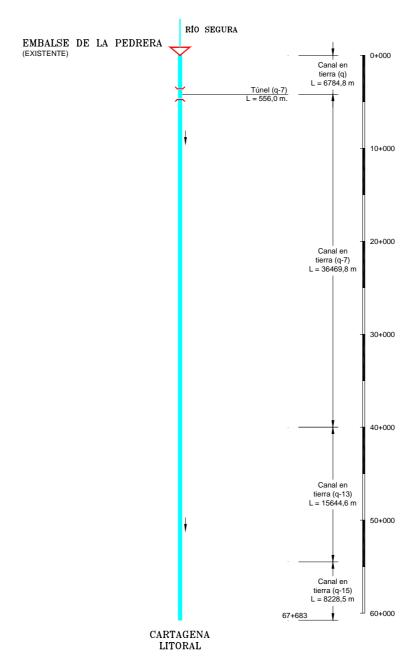


Figura 151. Conducción Bajo Segura-Cartagena Litoral. Esquema en planta

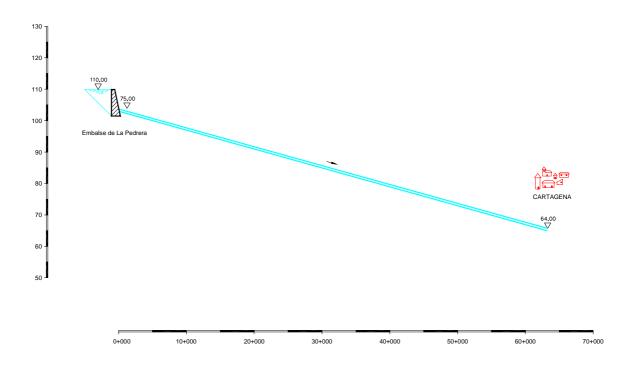


Figura 152. Conducción Bajo Segura-Cartagena Litoral. Esquema en alzado

2.37. CONDUCCIÓN CARTAGENA LITORAL-ALMANZORA

La función de costes de este tramo es la que se muestra en la figura adjunta.

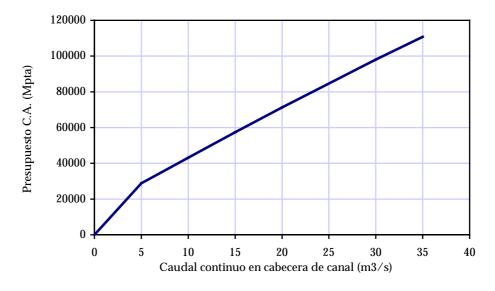


Figura 153. Conducción Cartagena Litoral-Almanzora. Función de coste

Respecto a los costes de circulación, habría que considerar tanto los debidos al consumo energético en las tres elevaciones previstas (con un coeficiente energético de 1,0 kWh/m³ y un precio de la energía de 8 pts/kWh), como el beneficio energético producido en la turbinación Almanzora (cuyo coeficiente energético es de -0,3 kWh/m³ y la tarifa eléctrica a aplicar oscilaría entre 8,8 y 13,7 pts/kWh). Por tanto, el coeficiente energético global resultante en la conducción es de 0,6-0,7 kWh/m³ y el precio de la energía oscilaría entre 5,6 y 7,6pts/kWh, lo que supone unos costes totales de flujo de unas 4,5 pts/m³. Las tablas adjuntas muestran el detalle de tales estimaciones.

Q	h _{func}	Nº	D	v	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m ³ /s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
5,0	24	2	1000	3,2	849	130,0	10,0	120,0	5,29	-0,3	13,7
10,0	24	2	1400	3,2	849	130,0	6,6	123,4	10,88	-0,3	13,6
15,0	24	2	1700	3,3	849	130,0	5,3	124,7	16,50	-0,3	12,6
20,0	24	2	2000	3,2	849	130,0	4,0	126,0	22,24	-0,3	11,7
30,0	24	2	2500	3,1	849	130,0	2,7	127,3	33,68	-0,3	9,8
35,0	24	2	2700	3,1	849	130,0	2,4	127,6	39,38	-0,3	8,8

Tabla 138. Conducción Cartagena Litoral-Almanzora. Coeficientes energéticos en las turbinaciones

Q	hfunc	Nº	D	V	L	H_{bruto}	H _{rozam.}	H _{neto}	Potencia	CE	Precio
(m^3/s)	(nº)	tubos	(mm)	(m/s)	(m)	(m)	(m)	(m)	(MW)	(kWh/m³)	(Pts/kWh)
5,0	20	1	1900	2,1	18261	270,0	40,2	310,2	21,5	1,0	8,0
10,0	20	1	2400	2,7	18261	270,0	46,3	316,3	43,8	1,0	8,0
15,0	20	1	3000	2,5	18261	270,0	31,7	301,7	62,6	1,0	8,0
20,0	20	1	3400	2,6	18261	270,0	28,9	298,9	82,7	1,0	8,0
25,0	20	1	4200	2,6	18261	270,0	21,1	291,1	120,8	0,9	8,0
35,0	20	1	4600	2,5	18261	270,0	17,6	287,6	139,3	0,9	8,0

Tabla 139. Conducción Cartagena Litoral-Almanzora. Coeficientes energéticos en las elevaciones

	Turbina	aciones	Elevac	iones	Varios	Tot	al	Total costes
Q	CE	Precio	CE	Precio	Precio	CE	Precio	operación
(m^3/s)	(kWh/m³)	(Pts/kWh)	(kWh/m³)	(Pts/kWh)	(Pts/m³)	(kWh/m³)	(Pts/kWh)	(Pts/m³)
5,0	-0,3	13,7	1,0	8,0	0,0	0,7	5,6	3,9
10,0	-0,3	13,6	1,0	8,0	0,0	0,7	5,6	4,0
15,0	-0,3	12,6	1,0	8,0	0,0	0,7	5,9	3,9
20,0	-0,3	11,7	1,0	8,0	0,0	0,6	6,2	4,0
25,0	-0,3	9,8	0,9	8,0	0,0	0,6	7,1	4,4
35,0	-0,3	8,8	0,9	8,0	0,0	0,6	7,6	4,6

Tabla 140. Conducción Cartagena Litoral-Almanzora. Costes totales de circulación

												2					
							5	1	0	1	q (1 5	m ³ /s)	20	l 9	0		35
						Importe	Importe	Importe			Importe				Importe	Importe	Importe
	A	L	V	Н		unitario	parcial	unitario	parcial	unitario	parcial	unitario	-	unitario	parcial	unitario	parcial
1 PRIMERA ELEVACION	(m)	(m)	(m3)	(m)	Medición	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts) 5.884	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)	(Mpts/ud)	(M Pts)
UdEstación de bombeo (1,20 q)				130	1	1.309	1.309	2.381	2.381	3.396	3.396	4.362	4.362	6.156	6.156	6.986	6.986
m Tubería de impulsión (1,20 q)					5539	0,157	870	0,268	1.484	0,381	2.110	0,495	2.742	0,730	4.043	0,850	4.708
Ud Chimenea de equilibrio					1	25	25	25	25	25	25	25	25	25	25	25	25
UdBalsa de modulación			14400 q		1	164	164	261	261	353	353	439	439	596	596	667	667
2 SEGUNDA ELEVACION							2.211		3.845		5.433		6.978		9.966		11.408
UdEstación de bombeo (1,20 q)				100	1	1.052	1.052	1.893	1.893	2.698	2.698	3.471	3.471	4.933	4.933	5.623	5.623
m Tubería de impulsión (1,20 q)					4508	0,157	708	0,268	1.208	0,381	1.718	0,495	2.231	0,730	3.291	0,850	3.832
UdBalsa de modulación			14400 q		2	164	327	261	523	353	706	439	879	596	1.193	667	1.335
m Sifón (1,20 q) Ud Chimenea de equilibrio					550 1	0,190 20	105 20	0,365 20	201 20	0,529 20	291 20	0,684	376 20		530 20	1,088	598 20
Od Chimenea de equinbrio					1	20	20	20	20	20	20	20	20	20	20	20	20
3 TERCERA ELEVACION							2.171		3.604		<u>5.018</u>		6.416		9.208		10.598
UdEstación de bombeo (1,20 q)				40	1	631	631	1.017	1.017	1.382	1.382	1.734	1.734	2.411	2.411	2.738	2.738
m Tubería de impulsión (1,20 q)			14400		7664	0,157	1.203	0,268	2.054	0,381	2.920	0,495	3.794	0,730	5.595	0,850	6.514
Ud Balsa de modulación Ud Chimenea de equilibrio			14400 q		2	164 10	327 10	261 10	523 10	353 10	706 10	439 10	879 10	596 10	1.193 10	667 10	1.335
•																	
4 TURBINACION DE ALMANZORA	4						<u>991</u>		1.776		2.544		3.294		4.740		5.436
Ud Central de turbinación (q)				130	1	863	863	1.570	1.570	2.258	2.258	2.928	2.928		4.210		4.823
m Tubería forzada (q) Ud Chimenéa de equilibrio					849 1	0,139 10	118 10	0,231	196 10	0,324	275 10	0,419 10	356 10	0,612	520 10	0,710 10	603 10
Od Chimenea de equinorio					1	10	10	10	10	10	10	10	10	10	10	10	10
5 <u>CANAL</u>					69.320		7.524		8.945		10.610		12.310		15.778		17.408
m Canal roca (q) Elevac.1/Túnel PK					15410	0,132	2.034	0,161	2.481	0,195	3.005	0,231	3.560	0,307	4.731	0,343	5.286
m Canal roca (q) Túnel PK 24/Eleva					10320 21162	0,132 0,085	1.362 1.799	0,161 0,097	1.662 2.053	0,195 0,111	2.012 2.349	0,231 0,124	2.384 2.624	0,307 0,148	3.168 3.132	0,343 0,159	3.540 3.365
m Canal tierra (q) Elevac.2/Elevac.3 m Canal tierra (q) Elevac.3/Túnel P					13449	0,085	1.143	0,097	1.305	0,111	1.493	0,124	1.668	0,148	1.990	0,159	2.138
m Canal roca (q) Túnel PK 93/Turb					8979	0,132	1.185	0,161	1.446	0,195	1.751	0,231	2.074	0,307	2.757	0,343	3.080
6 TUNELES																	
m Túnel PK 24 (q)					6.236 3767	0,307	1.914 1.156	0,415	2.588 1.563	0,508	3.168 1.914	0,589	3.673 2.219	0,722	4.502 2.720	0,778	4.852 2.931
m Túnel PK 93 (q)					2469	0,307	758	0,415	1.025	0,508	1.254	0,589	1.454	0,722	1.783	0,778	1.921
ν						,,,,,,,,		.,		.,		.,					
7 <u>SIFONES</u>					11.823		1.892		3.641		5.297		6.881		9.789		11.125
m Sifón de Fuente Álamo (q)					843	0,160	135		260		378	0,582	491	0,828	698	0,941	793
m Sifón Rambla de Azahía (q) m Sifón Rambla Caneas (q)					957 522	0,160 0,160	153 84	0,308	295 161	0,448 0,448	429 234	0,582 0,582	557 304	0,828 0,828	792 432	0,941 0,941	901 491
m Sifón Rambla Mingrano (q)					352	0,160	56	0,308	101	0,448	158	0,582	205	0,828	291	0,941	331
m Sifón Rambla Mergajón (q)					398	0,160	64	0,308	123	0,448	178	0,582	232	0,828	330	0,941	375
m Sifón Rambla González (q)					452	0,160	72	0,308	139	0,448	202	0,582	263	0,828	374	0,941	425
m Sifón PK 52 (q)					1543	0,160	247	0,308	475	0,448	691	0,582	898	0,828	1.278	0,941	1.452
m Sifón Rambla Cortés (q)					664	0,160	106		205	0,448	297	0,582	386		550	0,941	625
m Sifón Rambla Peladilla (q) m Sifón Rambla Merillo (q)					443 384	0,160 0,160	71 61	0,308	136 118		198 172	0,582 0,582	258 223	0,828 0,828	367 318	0,941	417 361
m Sifón Canal Lorca-Valle (q)					442	0,160	71	0,308	136		198	0,582	257	0,828	366		416
m Sifón PK 81 (q)					2002	0,160	320		617	0,448	897	0,582	1.165	0,828	1.658	0,941	1.884
m Sifón PK 88 (q)					290	0,160	46	0,308	89	0,448	130	0,582	169	0,828	240	0,941	273
m Sifón PK 90 (q)					210	0,160	34		65		94	0,582	122		174		198
m Sifón PK 90,6 (q)					247	0,160	40	0,308	76	0,448	111	0,582	144	0,828	205	0,941	232
m Sifón PK 91 (q) m Sifón PK 95 (q)					520 264	0,160 0,160	83 42	0,308 0,308	160 81	0,448 0,448	233 118	0,582 0,582	303 154	0,828 0,828	431 219	0,941	489 248
m Sifón Rambla del Palancar (q)					368	0,160	42 59		113		165	0,582	214		305	0,941	346
m Sifón Rambla Cañadas (q)					486	0,160	78		150		218	0,582	283		402	0,941	457
m Sifón Rambla Borduera (q)					436	0,160	70	0,308	134	0,448	195	0,582	254	0,828	361	0,941	410
PRINCIPLE CO. P. STRANGO	ner-		(D)				40.00		00		00.00		477.0-		04.00		MC 01 -
PRESUPUESTO DE EJECUCION MA' GASTOS GENERALES Y BENEFICIO				6) (M	Pts).		19.071 4.386		28.551 6.567		37.953 8.729		47.120 10.837		64.805 14.905		73.213 16.839
GRISTOS GENERALES I DENEFICIO	1111		AL (m Pts		ı tə.j.		23.457		35.118		46.683		57.957		79.710		90.052
			(16%) (N):		3.753		5.619		7.469		9.273		12.754		14.408
PRESUPUESTO DE EJECUCION POR							27.210		40.737		54.152		67.230		92.463		104.460
PRESUPUESTO CONOCIMIENTO D	E LA	ADM	/INISTR	ACIÓ	N (M Pts	.):	28.857		43.201		57.428		71.298		98.057		110.780

Tabla 141. Valoración de la conducción Cartagena Litoral-Almanzora

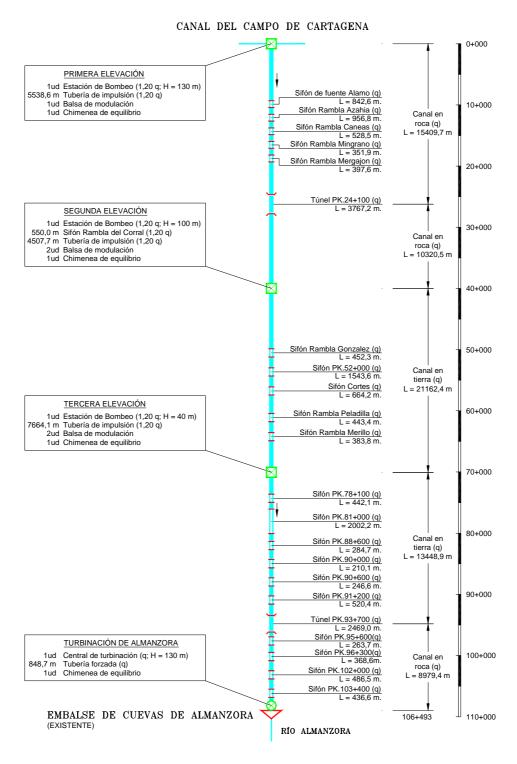


Figura 154. Conducción Cartagena Litoral-Almanzora. Esquema en planta

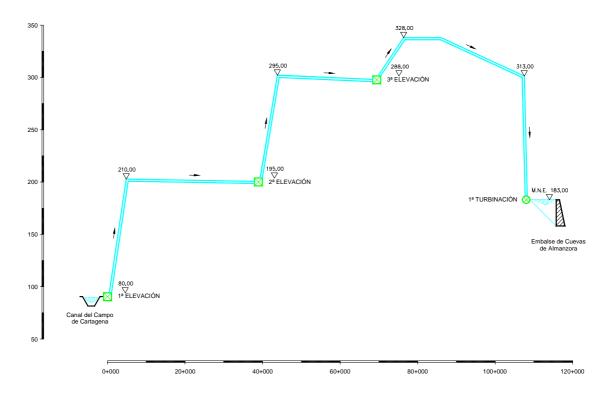


Figura 155. Conducción Cartagena Litoral-Almanzora. Esquema en alzado

2.38. RÍO TAJO. BOLARQUE-TOLEDO

En los costes de circulación de este tramo habría que considerar únicamente el beneficio energético producido por el incremento de producción en las centrales existentes, el cuál puede representarse por un equivalente energético de $0.15 \, \text{kWh/m}^3$, lo que supone un beneficio de $0.90 \, \text{pts/m}^3$ conforme puede verse en la tabla adjunta.

Tramo	Río	Salto afectado	Equivalente	Precio	Beneficio total
			energético	energía	(pts/m^3)
			(kWh/m³)	(pts/kWh)	
Bolarque-Toledo	Tajo	Bolarque (pie de presa)	0,0915	6	0,54
		Zorita	0,0304	6	0,18
		Almoguera	0,0306	6	0,18
		Total	0,1525	6	0,90

Tabla 142. Río Tajo de Bolarque a Toledo. Costes de circulación

2.39. RÍO TAJO. TOLEDO-AZUTÁN

En los costes de circulación de este tramo habría que considerar únicamente el beneficio energético producido por el incremento de producción en la central existente de Castrejón, el cuál puede representarse por un equivalente energético de 0,069 kWh/m³, lo que supone un beneficio de 0,41 pts/m³ conforme puede verse en la tabla adjunta.

Tramo	Río	Salto afectado	Equivalente energético (kWh/m³)	Precio energía (pts/kWh)	Beneficio total (pts/m³)
Toledo-Azután	Tajo	Castrejón	0,069	6	0,41
	-	Total	0,069	6	0,41

Tabla 143. Río Tajo de Toledo a Azután. Costes de circulación

2.40. RÍO MUNDO. TALAVE-CONFLUENCIA CON EL SEGURA

En los costes de circulación de este tramo habría que considerar únicamente el beneficio energético producido por el incremento de producción en la central existente de Talave, el cuál puede representarse por un equivalente energético de 0,087 kWh/m³, lo que supone un beneficio de 0,52 pts/m³ conforme puede verse en la tabla adjunta.

Tramo	Río	Salto afectado	Equivalente energético (kWh/m³)	Precio energía (pts/kWh)	Beneficio total (pts/m³)
Talave-Confluencia	Mundo	Talave	0,087	6	0,52
		Total	0.087	6	0.52

Tabla 144. Río Mundo de Talave a Confluencia. Costes de circulación

2.41. RÍO SEGURA. CONFLUENCIA CON EL MUNDO-OJÓS

En los costes de circulación de este tramo habría que considerar únicamente el beneficio energético producido por el incremento de producción en la central existente de Almadenes, el cuál puede representarse por un equivalente energético de 0,1054 kWh/m³, lo que supone un beneficio de 0,63 pts/m³ conforme puede verse en la tabla adjunta.

Tramo	Río	Salto afectado	Equivalente	Precio	Beneficio total
			energético	energía	(pts/m³)
			(kWh/m³)	(pts/kWh)	
Confluencia-Ojós	Segura	Almadenes	0,1054	6	0,63
		Total	0,1054	6	0,63

Tabla 145. Río Segura de Confluencia a Ojós. Costes de circulación

2.42. RÍO JÚCAR. ALARCÓN-EMBARCADEROS

En los costes de circulación de este tramo habría que considerar únicamente el beneficio energético producido por el incremento de producción en las centrales existentes, el cuál puede representarse por un equivalente energético de 0,44 kWh/m³, lo que supone un beneficio de 2,65 pts/m³ conforme puede verse en la tabla adjunta.

Tramo	Río	Salto afectad	lo	Equivalente	Precio	Beneficio total
				energético	energía	(pts/m³)
				(kWh/m^3)	(pts/kWh)	_
Alarcón-Embarcaderos	Júcar	Picazo		0,1121	6	0,67
		Cofrentes		0,3295	6	1,97
		7	Total	0,4416	6	2,65

Tabla 146. Río Júcar de Alarcón a Embarcaderos. Costes de circulación

2.43. RÍO JÚCAR. EMBARCADEROS-LA MUELA

El único salto en funcionamiento actualmente en este tramo de río es el aprovechamiento reversible de La Muela, el cual no se ve afectado por las detracciones por dicho carácter reversible. El salto de pie de presa de Cortes se incluye en el tramo siguiente La Muela-Tous. Por tanto, en el tramo que nos ocupa no hay afecciones hidroeléctricas.

2.44. RÍO JÚCAR. LA MUELA-TOUS

En los costes de circulación de este tramo habría que considerar únicamente el beneficio energético producido por el incremento de producción en la central existente de Cortes II, el cuál puede representarse por un equivalente energético de 0,204 kWh/m³, lo que supone un beneficio de 1,20 pts/m³ conforme puede verse en la tabla adjunta.

Tramo	Río	Salto afectado	Equivalente energético (kWh/m³)	Precio energía (pts/kWh)	Beneficio total (pts/m³)
La Muela-Tous	Júcar	Cortes II	0,204	6	1,20
		Total	0,204	6	1,20

Tabla 147. Río Júcar de la Muela a Tous. Costes de circulación